K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

Overview

KCP

License Build

The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for publication in the IEEE Robotics and Automation Letters (RA-L).

KCP is an efficient and effective local point cloud registration approach targeting for real-world 3D LiDAR scan matching problem. A simple (and naive) understanding is: ICP iteratively considers the closest point of each source point, but KCP considers the k closest points of each source point in the beginning, and outlier correspondences are mainly rejected by the maximum clique pruning method. KCP is written in C++ and we also support Python binding of KCP (pykcp).

For more, please refer to our paper:

  • Yu-Kai Lin, Wen-Chieh Lin, Chieh-Chih Wang, KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching. To appear in IEEE Robotics and Automation Letters (RA-L), 2022. (pdf) (code) (video)

If you use this project in your research, please cite:

@article{lin2022kcp,
  title={{KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching}},
  author={Lin, Yu-Kai and Lin, Wen-Chieh and Wang, Chieh-Chih},
  journal={IEEE Robotics and Automation Letters},
  volume={#},
  number={#},
  pages={#--#},
  year={2022},
}

and if you find this project helpful or interesting, please Star the repository. Thank you!

Table of Contents

📦 Resources

⚙️ Installation

The project is originally developed in Ubuntu 18.04, and the following instruction supposes that you are using Ubuntu 18.04 as well. I am not sure if it also works with other Ubuntu versions or other Linux distributions, but maybe you can give it a try 👍

Also, please feel free to open an issue if you encounter any problems of the following instruction.

Step 1. Preparing the Dependencies

You have to prepare the following packages or libraries used in KCP:

  1. A C++ compiler supporting C++14 and OpenMP (e.g. GCC 7.5).
  2. CMake3.11
  3. Git
  4. Eigen3 ≥ 3.3
  5. nanoflann
  6. TEASER++d79d0c67

GCC, CMake, Git, and Eigen3

sudo apt update
sudo apt install -y g++ build-essential libeigen3-dev git

sudo apt install -y software-properties-common lsb-release
wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | sudo tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
sudo apt update
sudo apt install cmake

nanoflann

cd ~
git clone https://github.com/jlblancoc/nanoflann
cd nanoflann
mkdir build && cd build
cmake .. -DNANOFLANN_BUILD_EXAMPLES=OFF -DNANOFLANN_BUILD_TESTS=OFF
make
sudo make install

TEASER++

cd ~
git clone https://github.com/MIT-SPARK/TEASER-plusplus
cd TEASER-plusplus
git checkout d79d0c67
mkdir build && cd build
cmake .. -DBUILD_TESTS=OFF -DBUILD_PYTHON_BINDINGS=OFF -DBUILD_DOC=OFF
make
sudo make install

Step 2. Preparing Dependencies of Python Binding (Optional)

The Python binding of KCP (pykcp) uses pybind11 to achieve operability between C++ and Python. KCP will automatically download and compile pybind11 during the compilation stage. However, you need to prepare a runable Python environment with header files for the Python C API (python3-dev):

sudo apt install -y python3 python3-dev

Step 3. Building KCP

Execute the following commands to build KCP:

Without Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake ..
make

With Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake .. -DKCP_BUILD_PYTHON_BINDING=ON -DPYTHON_EXECUTABLE=$(which python3)
make

Step 4. Installing KCP to the System (Optional)

This will make the KCP library available in the system, and any C++ (CMake) project can find the package by find_package(KCP). Think twice before you enter the following command!

# Under /path/to/KCP/build
sudo make install

🌱 Examples

We provide two examples (one for C++ and the other for Python 3) These examples take nuScenes' LiDAR data to perform registration. Please check

for more information.

📝 Some Remarks

Tuning Parameters

The major parameters are

  • kcp::KCP::Params::k and
  • kcp::KCP::Params::teaser::noise_bound,

where k is the number of nearest points of each source point selected to be part of initial correspondences, and noise_bound is the criterion to determine if a correspondence is correct. In our paper, we suggest k=2 and noise_bound the 3-sigma (we use noise_bound=0.06 meters for nuScenes data), and those are default values in the library.

To use different parameters to the KCP solver, please refer to the following snippets:

C++

#include <kcp/solver.hpp>

auto params = kcp::KCP::Params();

params.k                  = 2;
params.teaser.noise_bound = 0.06;

auto solver = kcp::KCP(params);

Python

import pykcp

params = pykcp.KCPParams()
params.k = 2
params.teaser.noise_bound = 0.06

solver = pykcp.KCP(params)

Controlling Computational Cost

Instead of correspondence-free registration in TEASER++, KCP considers k closest point correspondences to reduce the major computational cost of the maximum clique algorithm, and we have expressed the ability for real-world scenarios without any complicate or learning-based feature descriptor in the paper. However, it is still possible to encounter computational time or memory issue if there are too many correspondences fed to the solver.

We suggest controlling your keypoints around 500 for k=2 (in this way the computational time will be much closer to the one presented in the paper).

Torwarding Global Registration Approaches

It is promising that KCP can be extended to a global registration approach if a fast and reliable sparse feature point representation method is employed.

In this way, the role of RANSAC, a fast registration approach usually used in learning based approaches, is similar to KCP's, but the computation results of KCP are deterministic, and also, KCP has better theoretical supports.

🎁 Acknowledgement

This project refers to the computation of the smoothness term defined in LOAM (implemented in Tixiao Shan's excellent project LIO-SAM, which is licensed under BSD-3). We modified the definition of the smoothness term (and it is called the multi-scale curvature in this project).

Owner
Yu-Kai Lin
Studying for a master program of Computer Science in NCTU, Taiwan.
Yu-Kai Lin
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022