Code for the paper "Adversarial Generator-Encoder Networks"

Related tags

Deep Learninggan
Overview

This repository contains code for the paper

"Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky.

Pretrained models

This is how you can access the models used to generate figures in the paper.

  1. First install dev version of pytorch 0.2 and make sure you have jupyter notebook ready.

  2. Then download the models with the script:

bash download_pretrained.sh
  1. Run jupyter notebook and go through evaluate.ipynb.

Here is an example of samples and reconstructions for imagenet, celeba and cifar10 datasets generated with evaluate.ipynb.

Celeba

Samples Reconstructions

Cifar10

Samples Reconstructions

Tiny ImageNet

Samples Reconstructions

Training

Use age.py script to train a model. Here are the most important parameters:

  • --dataset: one of [celeba, cifar10, imagenet, svhn, mnist]
  • --dataroot: for datasets included in torchvision it is a directory where everything will be downloaded to; for imagenet, celeba datasets it is a path to a directory with folders train and val inside.
  • --image_size:
  • --save_dir: path to a folder, where checkpoints will be stored
  • --nz: dimensionality of latent space
  • -- batch_size: Batch size. Default 64.
  • --netG: .py file with generator definition. Searched in models directory
  • --netE: .py file with generator definition. Searched in models directory
  • --netG_chp: path to a generator checkpoint to load from
  • --netE_chp: path to an encoder checkpoint to load from
  • --nepoch: number of epoch to run
  • --start_epoch: epoch number to start from. Useful for finetuning.
  • --e_updates: Update plan for encoder. <num steps>;KL_fake:<weight>,KL_real:<weight>,match_z:<weight>,match_x:<weight>.
  • --g_updates: Update plan for generator. <num steps>;KL_fake:<weight>,match_z:<weight>,match_x:<weight>.

And misc arguments:

  • --workers: number of dataloader workers.
  • --ngf: controlles number of channels in generator
  • --ndf: controlles number of channels in encoder
  • --beta1: parameter for ADAM optimizer
  • --cpu: do not use GPU
  • --criterion: Parametric param or non-parametric nonparam way to compute KL. Parametric fits Gaussian into data, non-parametric is based on nearest neighbors. Default: param.
  • --KL: What KL to compute: qp or pq. Default is qp.
  • --noise: sphere for uniform on sphere or gaussian. Default sphere.
  • --match_z: loss to use as reconstruction loss in latent space. L1|L2|cos. Default cos.
  • --match_x: loss to use as reconstruction loss in data space. L1|L2|cos. Default L1.
  • --drop_lr: each drop_lr epochs a learning rate is dropped.
  • --save_every: controls how often intermediate results are stored. Default 50.
  • --manual_seed: random seed. Default 123.

Here is cmd you can start with:

Celeba

Let data_root to be a directory with two folders train, val, each with the images for corresponding split.

python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --lr 0.0002 --nz 64 --batch_size 64 --netG dcgan64px --netE dcgan64px --nepoch 5 --drop_lr 5 --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '3;KL_fake:1,match_z:1000,match_x:0'

It is beneficial to finetune the model with larger batch_size and stronger matching weight then:

python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --start_epoch 5 --lr 0.0002 --nz 64 --batch_size 256 --netG dcgan64px --netE dcgan64px --nepoch 6 --drop_lr 5   --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:15' --g_updates '3;KL_fake:1,match_z:1000,match_x:0' --netE_chp  <save_dir>/netE_epoch_5.pth --netG_chp <save_dir>/netG_epoch_5.pth

Imagenet

python age.py --dataset imagenet --dataroot /path/to/imagenet_dir/ --save_dir <save_dir> --image_size 32 --save_dir ${pdir} --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 6 --drop_lr 3  --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:2000,match_x:0' --workers 12

It can be beneficial to switch to 256 batch size after several epochs.

Cifar10

python age.py --dataset cifar10 --image_size 32 --save_dir <save_dir> --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 150 --drop_lr 40  --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:1000,match_x:0'

Tested with python 2.7.

Implementation is based on pyTorch DCGAN code.

Citation

If you found this code useful please cite our paper

@inproceedings{DBLP:conf/aaai/UlyanovVL18,
  author    = {Dmitry Ulyanov and
               Andrea Vedaldi and
               Victor S. Lempitsky},
  title     = {It Takes (Only) Two: Adversarial Generator-Encoder Networks},
  booktitle = {{AAAI}},
  publisher = {{AAAI} Press},
  year      = {2018}
}
Owner
Dmitry Ulyanov
Co-Founder at in3D, Phd @ Skoltech
Dmitry Ulyanov
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022