Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

Overview

TransNAS-Bench-101

This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

In this Markdown file, we show an example how to use TransNAS-Bench-101. The complete network training and evaluation information file can be found through VEGA.

How to use TransNAS-Bench-101

  1. Import the API object in ./code/api/api.py and create an API instance from the .pth file in ./api_home/: ​
from api import TransNASBenchAPI as API
path2nas_bench_file = "./api_home/transnas-bench_v10141024.pth"
api = API(path2nas_bench_file)
  1. Check the task information, number of architectures evaluated, and search spaces:
# show number of architectures and number of tasks
length = len(api)
task_list = api.task_list # list of tasks
print(f"This API contains {length} architectures in total across {len(task_list)} tasks.")
# This API contains 7352 architectures in total across 7 tasks.

# Check all model encoding
search_spaces = api.search_spaces # list of search space names
all_arch_dict = api.all_arch_dict # {search_space : list_of_architecture_names}
for ss in search_spaces:
   print(f"Search space '{ss}' contains {len(all_arch_dict[ss])} architectures.")
print(f"Names of 7 tasks: {task_list}")
# Search space 'macro' contains 3256 architectures.
# Search space 'micro' contains 4096 architectures.
# Names of 7 tasks: ['class_scene', 'class_object', 'room_layout', 'jigsaw', 'segmentsemantic', 'normal', 'autoencoder']
  1. Since different tasks may require different evaluation metrics, hence metric_dict showing the used metrics can be retrieved from api.metrics_dict. TransNAS-Bench API also recorded the model inference time, backbone/model parameters, backbone/model FLOPs in api.infor_names.
metrics_dict = api.metrics_dict # {task_name : list_of_metrics}
info_names = api.info_names # list of model info names

# check the training information of the example task
task = "class_object"
print(f"Task {task} recorded the following metrics: {metrics_dict[task]}")
print(f"The following model information are also recorded: {info_names}")
# Task class_object recorded the following metrics: ['train_top1', 'train_top5', 'train_loss', 'valid_top1', 'valid_top5', 'valid_loss', 'test_top1', 'test_top5', 'test_loss', 'time_elapsed']
# The following model information are also recorded: ['inference_time', 'encoder_params', 'model_params', 'model_FLOPs', 'encoder_FLOPs']
  1. Query the results of an architecture by arch string ​
# Given arch string
xarch = api.index2arch(1) # '64-2311-basic'
for xtask in api.task_list:
    print(f'----- {xtask} -----')
    print(f'--- info ---')
    for xinfo in api.info_names:
        print(f"{xinfo} : {api.get_model_info(xarch, xtask, xinfo)}")
    print(f'--- metrics ---')
    for xmetric in api.metrics_dict[xtask]:
        print(f"{xmetric} : {api.get_single_metric(xarch, xtask, xmetric, mode='best')}")
        print(f"best epoch : {api.get_best_epoch_status(xarch, xtask, metric=xmetric)}")
        print(f"final epoch : {api.get_epoch_status(xarch, xtask, epoch=-1)}")
        if ('valid' in xmetric and 'loss' not in xmetric) or ('valid' in xmetric and 'neg_loss' in xmetric):
            print(f"\nbest_arch -- {xmetric}: {api.get_best_archs(xtask, xmetric, 'micro')[0]}")

A complete example is given in code/api/example.py

  • cd code/api
  • python example.py

Example network encoding in both search spaces

Macro example network: 64-1234-basic
- Base channel: 64
- Macro skeleton: 1234 (4 stacked modules)
  - [m1(normal)-m2(channelx2)-m3(resolution/2)-m4(channelx2 & resolution/2)]
- Cell structure: basic (ResNet Basic Block)

Micro example network: 64-41414-1_02_333
- Base channel: 64
- Macro skeleton: 41414 (5 stacked modules)
  - [m1(channelx2 & resolution/2)-m2(normal)-m3(channelx2 & resolution/2)-m4(normal)-m5(channelx2 & resolution/2)]
- Cell structure: 1_02_333 (4 nodes, 6 edges)
  - node0: input tensor
  - node1: Skip-Connect( node0 ) # 1
  - node2: None( node0 ) + Conv1x1( node1 ) # 02
  - node3: Conv3x3( node0 ) + Conv3x3( node1 ) + Conv3x3( node2 ) # 333

Citation

If you find that TransNAS-Bench-101 helps your research, please consider citing it:

@inproceedings{duan2021transnas,
  title = {TransNAS-Bench-101: Improving Transferability and Generalizability of Cross-Task Neural Architecture Search},
  author = {Duan, Yawen and Chen, Xin and Xu, Hang and Chen, Zewei and Liang, Xiaodan and Zhang, Tong and Li, Zhenguo},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages = {5251--5260},
  year = {2021}
}
Owner
Yawen Duan
Visiting Research Student at CHAI, UC Berkeley; B.Sc. in Decision Analytics at HKU
Yawen Duan
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022