Learned Token Pruning for Transformers

Overview

LTP: Learned Token Pruning for Transformers

Screenshot from 2021-07-08 13-39-02

Screenshot from 2021-07-08 13-39-28

Check our paper for more details.

Installation

We follow the same installation procedure as the original Huggingface transformer repo.

pip install sklearn scipy datasets torch
pip install -e .  # in the top directory

Prepare Checkpoints

LTP is implemented on top of Huggingface transformer's I-BERT implementation. Therefore, we first need to generate a checkpoint file of ibert finetuned on the target downstream task. While you can do this on the original Huggingface repository, we also support our base branch ltp/base where you can run the following code to finetune ibert on the GLUE tasks.

git checkout ltp/base
cd examples/text-classification
python run_glue.py --model_name_or_path kssteven/ibert-roberta-base --output_dir {CKPT} --task {TASK} --do_train --do_eval {--some_more_arguments}
  • {TASK}: RTE, MRPC, STSB, SST2, QNLI, QQP, MNLI
  • Please refer to the Huggingface tutorial and the official documentation for more details in arguments and hyperparameters.
  • Note that as default ibert behaves the same as roberta (see this tutorial), hence the resulting model will be the same as roberta-base finetuned on the target GLUE task.

The final model will be checkpointed in {CKPT}.

  • Remove {CKPT}/trainer_state.json.
  • In the configuration file {CKPT}/config.json, change (1) "architectures" to ["LTPForSequenceClassification"] and (2) "model_type" to "ltp".

Run Learned Token Pruning

Add the following lines in the configuration file {CKPT}/config.json.

"prune_mode": "absolute_threshold",
"final_token_threshold": 0.01, 
"scoring_mode": "mean",

final_token_threshold determines the token threshold of the last layer, and the thresholds of the remaining layers will be linearly scaled. For instance, the thresholds for the 3rd, 6th, and 9th layers will be 0.0025, 0.005, and 0.0075, respectively, when setting the final_token_threshold , i.e., the threshold for the last (12th) layer, to 0.01. This number is a hyperparameter, and we found that 0.01 works well in many cases.

The learnable mode consists of 2 stages: soft threshold and hard threshold. Please refer to our paper for more details.

1. Soft Threshold

We first train the model using the soft threshold mode. This trains the thresholds as well as the model parameters to search for the best threshold configuration.

Run the following command:

python run.py --arch ltp-base --task {TASK} --restore {CKPT} --lr 2e-5 --temperature {T}\
  --lambda 0.1 --weight_decay 0 --bs 64 --masking_mode soft --epoch {epoch} --save_step 100 --no_load
  • {TASK}: RTE, MRPC, STSB, SST2, QNLI, QQP, MNLI
  • You can assign different learning rate for lr, but 2e-5 worked fine.
  • We set {epoch} to be 10 for smaller datasets (e.g., RTE, MRPC) and 1 for larger datasets (e.g., SST2, QNLI, MRPC).
  • --no_load flag will not load the best model at the end of the training (i.e., the final checkpoint will be the one at the end of training).
  • lambda is an important hyperparameter than controls the pruning level: the higher the value, the more we prune tokens. 0.01 ~ 0.2 worked well in many cases, but we recommend the user to empirically search for the best number for it.
  • temperature is another hyperparameter, and 1e-3 ~ 1e-5 worked well. In the paper, we searched over {1e−4, 2e−4, 5e−4, 1e−3, 2e−3}.

The final model will be checkpointed in {CKPT_soft} = checkpoints/base/{TASK}/absolute_threshold/rate_{final_token_threshold}/temperature_{T}/lambda_{lambda}/lr_{lr}. Remove trainer_state.json from the checkpoint file in {CKPT_soft}.

2. Hard Threshold

Once we learn the thresholds, we fix those values, turn back to the hard threshold mode, and finetune the model parameters only.

Run the following command:

python run.py --arch ltp-base --task {TASK} --restore {CKPT_soft} --lr {LR} --bs 64 --masking_mode hard --epoch 5 
  • We used {LR} {0.5, 1, 2}e-5 in the paper.
  • You can additionally set --save_step 500 for more frequent evaluation/logging. The default setting will evaluate for every 1 epoch.

The final model will be checkpointed in {CKPT_soft}/hard/lr_{LR}.

Run Baseline Methods

We additionally provide code to reproduce the baseline methods used in our paper (i.e., top-k and manual threshold).

Top-k Token Pruning

Add the following lines in {CKPT}/config.json.

"prune_mode": "topk",
"token_keep_rate": 0.2,

The token keep rates of the first three layers and the last layer are 1 and token_keep_rate, respectively. The keep rates of the remaining layers are scaled linearly. The smaller token_keep_rate is, the more aggressive we prune tokens. You can also assign negative number for token_keep_rate and, in that case, the keep rate of each layer will be assigned as max(0, keep_rate).

Run the following command:

python run.py --arch ltp-base --task {TASK} --restore {CKPT} --lr {LR} --bs 64 --masking_mode hard --epoch 5
  • We used {LR} {0.5, 1, 2}e-5 in the paper.
  • You can additionally set --save_step 500 for more frequent evaluation/logging. The default setting will evaluate for every 1 epoch.

The final model will be checkpointed in {CKPT}/topk/lr_{LR}.

Manual(Non-leanrable) Threshold Pruning

Add the following lines in {CKPT}/config.json.

"prune_mode": "absolute_threshold",
"final_token_threshold": 0.01, 
"scoring_mode": "mean",

Run the following command:

python run.py --arch ltp-base --task {TASK} --restore {CKPT} --lr {LR} --bs 64 --masking_mode hard --epoch 5 --save_step 500
  • We used {LR} {0.5, 1, 2}e-5 in the paper.
  • You can additionally set --save_step 500 for more frequent evaluation/logging. The default setting will evaluate for every 1 epoch.
  • Note that the only difference from the learned token pruning mode is that we run the hard threshold mode from the beginning.

The final model will be checkpointed in {CKPT}/hard/lr_{LR}.

We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022