Boosted CVaR Classification (NeurIPS 2021)

Overview

Boosted CVaR Classification

Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar
NeurIPS 2021

Table of Contents

Quick Start

Before running the code, please install all the required packages in requirements.txt by running:

pip install -r requirements.txt

In the code, we solve linear programs with the MOSEK solver, which requires a license. You can acquire a free academic license from https://www.mosek.com/products/academic-licenses/. Please make sure that the license file is placed in the correct folder so that the solver could work.

Train

To train a set of base models with boosting, run the following shell command:

python train.py --dataset [DATASET] --data_root /path/to/dataset 
                --alg [ALGORITHM] --epochs [EPOCHS] --iters_per_epoch [ITERS]
                --scheduler [SCHEDULER] --warmup [WARMUP_EPOCHS] --seed [SEED]

Use the --download option to download the dataset if you are running for the first time. Use the --save_file option to save your training results into a .mat file. Set the training hyperparameters with --alpha, --beta and --eta.

For example, to train a set of base models on Cifar-10 with AdaLPBoost, use the following shell command:

python train.py --dataset cifar10 --data_root data --alg adalpboost 
                --eta 1.0 --epochs 100 --iters_per_epoch 5000
                --scheduler 2000,4000 --warmup 20 --seed 2021
                --save_file cifar10.mat

Evaluation

To evaluate the models trained with the above command, run:

python test.py --file cifar10.mat

Introduction

In this work, we study the CVaR classification problem, which requires a classifier to have low α-CVaR loss, i.e. low average loss over the worst α fraction of the samples in the dataset. While previous work showed that no deterministic model learning algorithm can achieve a lower α-CVaR loss than ERM, we address this issue by learning randomized models. Specifically we propose the Boosted CVaR Classification framework that learns ensemble models via Boosting. Our motivation comes from the direct relationship between the CVaR loss and the LPBoost objective. We implement two algorithms based on the framework: one uses LPBoost, and the other named AdaLPBoost uses AdaBoost to pick the sample weights and LPBoost to pick the model weights.

Algorithms

We implement three algorithms in algs.py:

Name Description
uniform All sample weight vectors are uniform distributions.
lpboost Regularized LPBoost (set --beta for regularization).
adalpboost α-AdaLPBoost.

train.py only trains the base models. After the base models are trained, use test.py to select the model weights by solving the dual LPBoost problem.

Parameters

All default training parameters can be found in config.py. For Regularized LPBoost we use β = 100 for all α. For AdaLPBoost we use η = 1.0.

Citation and Contact

To cite this work, please use the following BibTex entry:

@inproceedings{zhai2021boosted,
  author = {Zhai, Runtian and Dan, Chen and Suggala, Arun Sai and Kolter, Zico and Ravikumar, Pradeep},
  booktitle = {Advances in Neural Information Processing Systems},
  title = {Boosted CVaR Classification},
  volume = {34},
  year = {2021}
}

To contact us, please email to the following address: Runtian Zhai <[email protected]>

Owner
Runtian Zhai
2nd year PhD at CMU CSD.
Runtian Zhai
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022