Attentive Implicit Representation Networks (AIR-Nets)

Related tags

Deep LearningAIR-Nets
Overview

Attentive Implicit Representation Networks (AIR-Nets)

Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV)

teaser.mov

This repository is the offical implementation of the paper

AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations
by Simon Giebenhain and Bastian Goldluecke

Furthermore it provides a unified framework to execute Occupancy Networks (ONets), Convolutional Occuapncy Networks (ConvONets) and IF-Nets.

More qualitative results of our method can be found here.

Install

All experiments with AIR-Nets were run using CUDA version 11.2 and the official pytorch docker image nvcr.io/nvidia/pytorch:20.11-py3, as published by nvidia here. However, as the model is solely based on simple, common mechanisms, older CUDA and pytorch versions should also work. We provide the air-net_env.yaml file that holds all python requirements for this project. To conveniently install them automatically with anaconda you can use:

conda env create -f air-net_env.yml
conda activate air-net

AIR-Nets use farthest point sampling (FPS) to downsample the input. Run

pip install pointnet2_ops_lib/.

inorder to install the cuda implementation of FPS. Credits for this go to Erik Wijams's GitHub, from where the code was copied for convenience.

Running

python setup.py build_ext --inplace

installs the MISE algorithm (see http://www.cvlibs.net/publications/Mescheder2019CVPR.pdf) for extracting the reconstructed shapes as meshes.

When you want to run Convolutional Occupancy Networks you will have to install torch scatter using the official instructions found here.

Data Preparation

In our paper we mainly did experiments with the ShapeNet dataset, but preprocessed in two different falvours. The following describes the preprocessing for both alternatives. Note that they work individually, hence there is no need to prepare both. (When wanting to train with noise I would recommend the Onet data, since the supervision of the IF-Net data is concentrated so close to the boundary that the problem gets a bit ill-posed (adapting noise level and supervision distance can solve this, however).)

Preparing the data used in ONets and ConvONets

To parapre the ONet data clone their repository. Navigate to their repo cd occupancy_networks and run

bash scripts/download_data.sh

which will download and unpack the data automatically (consuming 73.4 GB). From the perspective of the main repository this will place the data in occupancy_networks/data/ShapeNet.

Prepating the IF-Net data

A small disclaimer: Preparing the data as in this tutorial will produce ~700GB of data. Deleting the .obj and .off files should reduce the load to 250GB. Storage demand can further be reduced by reducing the number of samples in data_processing/boundary_sampling.py. If storage is scarce the ONet data (see below) is an alternative.

This data preparation pipeline is mainly copied from IF-Nets, but slightly simplified.

Install a small library needed for the preprocessing using

cd data_processing/libmesh/
python setup.py build_ext --inplace
cd ../..

Furthermore you might need to install meshlab and xvfb using

apt-get update
apt-get install meshlab
apt-get install xvfb

To install gcc you can run sudo apt install build-essential.

To get started, download the preprocessed data by [Xu et. al. NeurIPS'19] from Google Drive into the shapenet folder.

Please note that some objects in this dataset were made watertight "incorrectly". More specifically some object parts are "double coated", such that the object boundary actually is composed of two boundaries which lie very close together. Therefor the "inside" of such objects lies in between these two boundaries, whereas the "true inside" would be classified as outside. This clearly can lead to ugly reconstructionsl, since representing such a thin "inside" is much trickier.

Then extract the files into shapenet\data using:

ls shapenet/*.tar.gz |xargs -n1 -i tar -xf {} -C shapenet/data/

Next, the input and supervision data is prepared. First, the data is converted to the .off-format and scaled (such that the longest edge of the bounding box for each object has unit length) using

python data_processing/convert_to_scaled_off.py

Then the point cloud input data can be created using

python data_processing/sample_surface.py

which samples 30.000 point uniformly distributed on the surface of the ground truth mesh. During training and testing the input point clouds will be randomly subsampled from these surface samples. The coordinates and corresponding ground truth occupancy values used for supervision during training can be generated using

python data_processing/boundary_sampling.py -sigma 0.1
python data_processing/boundary_sampling.py -sigma 0.01

where -sigma specifies the standard deviation of the normally distributed displacements added onto surface samples. Each call will generate 100.000 samples near the object's surface for which ground truth occupancy values are generated using the implicit waterproofing algorithm from IF-Nets supplementary. I have not experimented with any other values for sigma, and just copied the proposed values.

In order to remove meshes that could not be preprocessed correctly (should not be more than around 15 meshes) you should run

python data_processing/filter_corrupted.py -file 'surface_30000_samples.npy' -delete

Pay attantion with this command, i.e. the directory of all objects that don't contain the surface_30000_samples.npy file are deleted. If you chose to use a different number points, please make sure to adapt the command accordingly.

Finally the data should be located in shapenet/data.

Preparing the FAUST dataset

In order to download the FAUST dataset visit http://faust.is.tue.mpg.de and sign-up there. Once your account is approved you can download a .zip-file nameed MPI-FAUST.zip. Please place the extracted folder in the main folder, such that the data can be found in MPI-FAUST.

Training

For the training and model specification I use .yaml files. Their structure is explained in a separate markdown file here, which also has explanations which parameters can tune the model to become less memory intensive.

To train the model run

python train.py -exp_name YOUR_EXP_NAME -cfg_file configs/YOUR_CFG_FILE -data_type YOUR_DATA_TYPE

which stores results in experiments/YOUR_EXP_NAME. -cfg_file specifies the path to the config file. The content of the config file will then also be stored in experiments/config.yaml. YOUR_DATA_TYPE can either be 'ifnet', 'onet' or 'human' and dictates which dataset to use. Make sure to adapt the batch_size parameter in the config file accoridng to your GPU size.

Training progress is saved using tensorboard. You can visualize it by running

tensorboard --logdir experiments/YOUR_EXP_NAME/summary/ 

Note that checkpoints (including the optimizer) are saved after each epoch in the checkpoints folder. Therefore training can seamlessly be continued.

Generation

To generate reconstructions of the test set, run

python generate.py -exp_name YOUR_EXP_NAME -checkpoint CKPT_NUM -batch_points 400000 -method REC_METHOD 

where CKPT_NUM specifies the epoch to load the model from and -batch_points specifies how many points are batched together and may have top be adapted to your GPU size.
REC_METHOD can either be mise or mcubes. The former (and recommended) option uses the MISE algorithm for reconstruciton. The latter uses the vanilla marching cubes algorithm. For the MISE you can specifiy to additional paramters -mise_res (initial resolution, default is 64) and -mise_steps (number of refinement steps, defualt 2). (Note that we used 3 refinement steps for the main results of the dense models in the paper, just to be on the save side and not miss any details.) For the regular marching cubes algorithm you can use -mcubes_res to specify the resolution of the grid (default 128). Note that the cubic scaling quickly renders this really slow.

The command will place the generate meshes in the .OFFformat in experiments/YOUR_EXP_NAME/[email protected]_resxmise_steps/generation or experiments/YOUR_EXP_NAME/[email protected]_res/generation depending on method.

Evaluation

Running

python data_processing/evaluate.py -reconst -generation_path experiments/YOUR_EXP_NAME/evaluation_CKPT.../generation

will evaluate the generated meshes using the most common metrics: the volumetric IOU, the Chamfer distance (L1 and L2), the Normal consistency and F-score.

The results are summarized in experiment/YOUR_EXP_NAME/evaluation_CKPT.../evaluation_results.pkl by running

python data_processing/evaluate_gather.py -generation_path experiments/YOUR_EXP_NAME/evaluation_CKPT.../generation

Pretrained Models

Weights of trained models can be found here. For example create a folder experiments/PRETRAINED_MODEL, placing the corresponding config file in experiments/PRETRAINED_MODEL/configs.yaml and the weights in experiments/PRETRAINED_MODEL/checkpoints/ckpt.tar. Then run

python generate.py -exp_name PRETRAINED_MODEL -ckpt_name ckpt.tar -data_type DATA_TYPE

Contact

For questions, comments and to discuss ideas please contact Simon Giebenhain via simon.giebenhain (at] uni-konstanz {dot| de.

Citation

@inproceedings{giebenhain2021airnets,
title={AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations},
author={Giebenhain, Simon and Goldluecke, Bastian},
booktitle={2021 International Conference on 3D Vision (3DV)},
year={2021},
organization={IEEE}
}

Acknowledgements

Large parts of this repository as well as the structure are copied from Julian Chibane's GitHub repository of the IF-Net paper. Please consider also citing their work, when using this repository!

This project also uses libraries form Occupancy Networks by Mescheder et al. CVPR'19 and from Convolutional Occupancy Networks by [Peng et al. ECCV'20].
We also want to thank DISN by [Xu et. al. NeurIPS'19], who provided their preprocessed ShapeNet data publicly. Please consider to cite them if you use our code.

License

Copyright (c) 2020 Julian Chibane, Max-Planck-Gesellschaft and
2021 Simon Giebenhain, Universität Konstanz

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes. For commercial inquiries, please see above contact information.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion paper and the AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations paper in documents and papers that report on research using this Software.

Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023