PyTorch implementation of some learning rate schedulers for deep learning researcher.

Overview

pytorch-lr-scheduler

PyTorch implementation of some learning rate schedulers for deep learning researcher.

Usage

WarmupReduceLROnPlateauScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.warmup_reduce_lr_on_plateau_scheduler import WarmupReduceLROnPlateauScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = WarmupReduceLROnPlateauScheduler(
        optimizer, 
        init_lr=1e-10, 
        peak_lr=1e-4, 
        warmup_steps=30000, 
        patience=1,
        factor=0.3,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            if timestep < warmup_steps:
                scheduler.step()
                
        val_loss = validate()
        scheduler.step(val_loss)

TransformerLRScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.transformer_lr_scheduler import TransformerLRScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = TransformerLRScheduler(
        optimizer=optimizer, 
        init_lr=1e-10, 
        peak_lr=0.1,
        final_lr=1e-4, 
        final_lr_scale=0.05,
        warmup_steps=3000, 
        decay_steps=17000,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            scheduler.step()

TriStageLRScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.tri_stage_lr_scheduler import TriStageLRScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = TriStageLRScheduler(
        optimizer, 
        init_lr=1e-10, 
        peak_lr=1e-4, 
        final_lr=1e-7, 
        init_lr_scale=0.01, 
        final_lr_scale=0.05,
        warmup_steps=30000, 
        hold_steps=70000, 
        decay_steps=100000,
        total_steps=200000,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            scheduler.step()

ReduceLROnPlateauScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.reduce_lr_on_plateau_lr_scheduler import ReduceLROnPlateauScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-4)

    scheduler = ReduceLROnPlateauScheduler(optimizer, patience=1, factor=0.3)

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
        
        val_loss = validate()
        scheduler.step(val_loss)

WarmupLRScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.warmup_lr_scheduler import WarmupLRScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = WarmupLRScheduler(
        optimizer, 
        init_lr=1e-10, 
        peak_lr=1e-4, 
        warmup_steps=4000,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            scheduler.step()

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on Github.

I appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

I follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

License

This project is licensed under the MIT LICENSE - see the LICENSE.md file for details

Owner
Soohwan Kim
Toward human-like A.I.
Soohwan Kim
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022