PyTorch implementation of some learning rate schedulers for deep learning researcher.

Overview

pytorch-lr-scheduler

PyTorch implementation of some learning rate schedulers for deep learning researcher.

Usage

WarmupReduceLROnPlateauScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.warmup_reduce_lr_on_plateau_scheduler import WarmupReduceLROnPlateauScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = WarmupReduceLROnPlateauScheduler(
        optimizer, 
        init_lr=1e-10, 
        peak_lr=1e-4, 
        warmup_steps=30000, 
        patience=1,
        factor=0.3,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            if timestep < warmup_steps:
                scheduler.step()
                
        val_loss = validate()
        scheduler.step(val_loss)

TransformerLRScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.transformer_lr_scheduler import TransformerLRScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = TransformerLRScheduler(
        optimizer=optimizer, 
        init_lr=1e-10, 
        peak_lr=0.1,
        final_lr=1e-4, 
        final_lr_scale=0.05,
        warmup_steps=3000, 
        decay_steps=17000,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            scheduler.step()

TriStageLRScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.tri_stage_lr_scheduler import TriStageLRScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = TriStageLRScheduler(
        optimizer, 
        init_lr=1e-10, 
        peak_lr=1e-4, 
        final_lr=1e-7, 
        init_lr_scale=0.01, 
        final_lr_scale=0.05,
        warmup_steps=30000, 
        hold_steps=70000, 
        decay_steps=100000,
        total_steps=200000,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            scheduler.step()

ReduceLROnPlateauScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.reduce_lr_on_plateau_lr_scheduler import ReduceLROnPlateauScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-4)

    scheduler = ReduceLROnPlateauScheduler(optimizer, patience=1, factor=0.3)

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
        
        val_loss = validate()
        scheduler.step(val_loss)

WarmupLRScheduler

  • Visualize

  • Example code
import torch

from lr_scheduler.warmup_lr_scheduler import WarmupLRScheduler

if __name__ == '__main__':
    max_epochs, steps_in_epoch = 10, 10000

    model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
    optimizer = torch.optim.Adam(model, 1e-10)

    scheduler = WarmupLRScheduler(
        optimizer, 
        init_lr=1e-10, 
        peak_lr=1e-4, 
        warmup_steps=4000,
    )

    for epoch in range(max_epochs):
        for timestep in range(steps_in_epoch):
            ...
            ...
            scheduler.step()

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on Github.

I appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

I follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

License

This project is licensed under the MIT LICENSE - see the LICENSE.md file for details

Owner
Soohwan Kim
Toward human-like A.I.
Soohwan Kim
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023