Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Overview

Invariant Point Attention - Pytorch

Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alphafold2 for coordinate refinement.

  • write up a test for invariance under rotation
  • enforce float32 for certain operations

Install

$ pip install invariant-point-attention

Usage

import torch
from einops import repeat
from invariant_point_attention import InvariantPointAttention

attn = InvariantPointAttention(
    dim = 64,                  # single (and pairwise) representation dimension
    heads = 8,                 # number of attention heads
    scalar_key_dim = 16,       # scalar query-key dimension
    scalar_value_dim = 16,     # scalar value dimension
    point_key_dim = 4,         # point query-key dimension
    point_value_dim = 4        # point value dimension
)

single_repr   = torch.randn(1, 256, 64)      # (batch x seq x dim)
pairwise_repr = torch.randn(1, 256, 256, 64) # (batch x seq x seq x dim)
mask          = torch.ones(1, 256).bool()    # (batch x seq)

rotations     = repeat(torch.eye(3), '... -> b n ...', b = 1, n = 256)  # (batch x seq x rot1 x rot2) - example is identity
translations  = torch.zeros(1, 256, 3) # translation, also identity for example

attn_out = attn(
    single_repr,
    pairwise_repr,
    rotations = rotations,
    translations = translations,
    mask = mask
)

attn_out.shape # (1, 256, 64)

You can also use this module without the pairwise representations, which is very specific to the Alphafold2 architecture.

import torch
from einops import repeat
from invariant_point_attention import InvariantPointAttention

attn = InvariantPointAttention(
    dim = 64,
    heads = 8,
    require_pairwise_repr = False   # set this to False to use the module without pairwise representations
)

seq           = torch.randn(1, 256, 64)
mask          = torch.ones(1, 256).bool()

rotations     = repeat(torch.eye(3), '... -> b n ...', b = 1, n = 256)
translations  = torch.randn(1, 256, 3)

attn_out = attn(
    seq,
    rotations = rotations,
    translations = translations,
    mask = mask
)

attn_out.shape # (1, 256, 64)

You can also use one IPA-based transformer block, which is an IPA followed by a feedforward. By default it will use post-layernorm as done in the official code, but you can also try pre-layernorm by setting post_norm = False

import torch
from torch import nn
from einops import repeat
from invariant_point_attention import IPABlock

block = IPABlock(
    dim = 64,
    heads = 8,
    scalar_key_dim = 16,
    scalar_value_dim = 16,
    point_key_dim = 4,
    point_value_dim = 4
)

seq           = torch.randn(1, 256, 64)
pairwise_repr = torch.randn(1, 256, 256, 64)
mask          = torch.ones(1, 256).bool()

rotations     = repeat(torch.eye(3), 'r1 r2 -> b n r1 r2', b = 1, n = 256)
translations  = torch.randn(1, 256, 3)

block_out = block(
    seq,
    pairwise_repr = pairwise_repr,
    rotations = rotations,
    translations = translations,
    mask = mask
)

updates = nn.Linear(64, 6)(block_out)
quaternion_update, translation_update = updates.chunk(2, dim = -1) # (1, 256, 3), (1, 256, 3)

# apply updates to rotations and translations for the next iteration

Citations

@Article{AlphaFold2021,
    author  = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
    journal = {Nature},
    title   = {Highly accurate protein structure prediction with {AlphaFold}},
    year    = {2021},
    doi     = {10.1038/s41586-021-03819-2},
    note    = {(Accelerated article preview)},
}
Comments
  • Computing point dist - use cartesian dimension instead of hidden dimension

    Computing point dist - use cartesian dimension instead of hidden dimension

    https://github.com/lucidrains/invariant-point-attention/blob/2f1fb7ca003d9c94d4144d1f281f8cbc914c01c2/invariant_point_attention/invariant_point_attention.py#L130

    I think it should be dim=-1, thus using the cartesian (xyz) axis, rather than dim=-2, which uses the hidden dimension.

    opened by aced125 3
  • In-place rotation detach not allowed

    In-place rotation detach not allowed

    Hi, this is probably highly version-dependent (I have pytorch=1.11.0, pytorch3d=0.7.0 nightly), but I thought I'd report it. Torch doesn't like the in-place detach of the rotation tensor. Full stack trace (from denoise.py):

    Traceback (most recent call last):
      File "denoise.py", line 56, in <module>
        denoised_coords = net(
      File "/home/pi-user/miniconda3/envs/piai/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/pi-user/invariant-point-attention/invariant_point_attention/invariant_point_attention.py", line 336, in forward
        rotations.detach_()
    RuntimeError: Can't detach views in-place. Use detach() instead. If you are using DistributedDataParallel (DDP) for training, and gradient_as_bucket_view is set as True, gradients are views of DDP buckets, and hence detach_() cannot be called on these gradients. To fix this error, please refer to the Optimizer.zero_grad() function in torch/optim/optimizer.py as the solution.
    

    Switching to rotations = rotations.detach() seems to behave correctly (tested in denoise.py and my own code). I'm not totally sure if this allocates a separate tensor, or just creates a new node pointing to the same data.

    opened by sidnarayanan 1
  • Report a bug that causes instability in training

    Report a bug that causes instability in training

    Hi, I would like to report a bug in the rotation, that causes instability in training. https://github.com/lucidrains/invariant-point-attention/blob/de337568959eb7611ba56eace2f642ca41e26216/invariant_point_attention/invariant_point_attention.py#L322

    The IPA Transformer is similar to the structure module in AF2, where the recycling is used. Note that we usually detach the gradient of rotation, which may causes instability during training. The reason is that the gradient of rotation would update the rotation during back propagation, which results in the instability based on experiments. Therefore we usually detach the rotation to dispel the updating effect of gradient descent. I have seen you do this in your alphafold2 repo (https://github.com/lucidrains/alphafold2).

    If you think this is a problem, please let me know. I am happy to submit a pr to fix that.

    Best, Zhangzhi Peng

    opened by pengzhangzhi 1
  • Subtle mistake in the implementation

    Subtle mistake in the implementation

    Hi. Thanks for your implementation. It is very helpful. However, I find that you miss the dropout in the IPAModule.

    https://github.com/lucidrains/invariant-point-attention/blob/de337568959eb7611ba56eace2f642ca41e26216/invariant_point_attention/invariant_point_attention.py#L239

    In the alphafold2 supplementary, the dropout is nested in the layer norm, which also holds true in the layer norm at transition layer (line 9 in the figure below). image

    If you think this is a problem, please let me know. I will submit a pr to fix it. Thanks again for sharing such an amazing repo.

    Best, Zhangzhi Peng

    opened by pengzhangzhi 1
  • change quaternions update as original alphafold2

    change quaternions update as original alphafold2

    In the original alphafold2 IPA module, pure-quaternion (without real part) description is used for quaternion update. This can be broken down to the residual-update-like formulation. But in this code you use (1, a, b, c) style quaternion so I believe the quaternion update should be done as a simple multiply update. As far as I have tested, the loss seems to go down more efficiently with the modification.

    opened by ShintaroMinami 1
  • #126 maybe omit the 'self.point_attn_logits_scale'?

    #126 maybe omit the 'self.point_attn_logits_scale'?

    Hi luci:

    I read the original paper and compare it to your implement, found one place might be some mistake:

    #126. attn_logits_points = -0.5 * (point_dist * point_weights).sum(dim = -1),

    I thought it should be attn_logits_points = -0.5 * (point_dist * point_weights * self.point_attn_logits_scale).sum(dim = -1)

    Thanks for your sharing!

    opened by CiaoHe 1
  • Application of Invariant point attention : preserver part of structure.

    Application of Invariant point attention : preserver part of structure.

    Hi, lucidrian. First of all really thanks for your work!

    I have a question, how can I change(denoise) the structure only in the region I want, how do I do it? (denoise.py)

    opened by hw-protein 0
  • Equivariance test for IPA Transformer

    Equivariance test for IPA Transformer

    @lucidrains I would like to ask about the equivariance of the transformer (not IPA blocks). I wonder if you checked for the equivariance of the output when you allow the transformation of local points to global points using the updated quaternions and translations. I am not sure why this test fails in my case.

    opened by amrhamedp 1
Owner
Phil Wang
Working with Attention
Phil Wang
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
2 Jul 19, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022