Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Overview

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Install

Clone the repository and run:

$ pip install .

Usage

This code implements the adaECOLog algorithms (OFU and TS variants) - both from the aforedmentioned paper, along with several baselines (oldest to newest):

Experiments can be ran for several Logistic Bandit (i.e structured Bernoulli feedback) environments, such as static and time-varying finite arm-sets, or inifinite arm-sets (e.g. unit ball).

regret_fig

Single Experiment

Single experiments (one algorithm for one environment) can be ran thanks to scripts/run_example.py. The script instantiate the algorithm and environment indicated in the file scripts/configs/example_config.py and plots the regret.

Benchmark

Benchmarks can be obtained thanks to scripts/run_all.py. This script runs experiments for any config file in scripts/configs/generated_configs/ and stores the result in scripts/logs/.

Plot results

You can use scripts/plot_regret.py to plot regret curves. This scripts plot regret curves for all logs in scripts/logs/ that match the indicated dimension and parameter norm.

usage: plot_regret.py [-h] [-d [D]] [-pn [PN]]

Plot regret curves (by default for dimension=2 and parameter norm=3)

optional arguments:
  -h, --help  show this help message and exit
  -d [D]      Dimension (default: 2)
  -pn [PN]    Parameter norm (default: 4.0)

Generating configs

You can automatically generate config files thanks to scripts/generate_configs.py.

usage: generate_configs.py [-h] [-dims DIMS [DIMS ...]] [-pn PN [PN ...]] [-algos ALGOS [ALGOS ...]] [-r [R]] [-hz [HZ]] [-ast [AST]] [-ass [ASS]] [-fl [FL]]

Automatically creates configs, stored in configs/generated_configs/

optional arguments:
  -h, --help            show this help message and exit
  -dims DIMS [DIMS ...]
                        Dimension (default: None)
  -pn PN [PN ...]       Parameter norm (||theta_star||) (default: None)
  -algos ALGOS [ALGOS ...]
                        Algorithms. Possibilities include GLM-UCB, LogUCB1, OFULog-r, OL2M, GLOC or adaECOLog (default: None)
  -r [R]                # of independent runs (default: 20)
  -hz [HZ]              Horizon, normalized (later multiplied by sqrt(dim)) (default: 1000)
  -ast [AST]            Arm set type. Must be either fixed_discrete, tv_discrete or ball (default: fixed_discrete)
  -ass [ASS]            Arm set size, normalized (later multiplied by dim) (default: 10)
  -fl [FL]              Failure level, must be in (0,1) (default: 0.05)

For instance running python generate_configs.py -dims 2 -pn 3 4 5 -algos GLM-UCB GLOC OL2M adaECOLog generates configs in dimension 2 for GLM-UCB, GLOC, OL2M and adaECOLog, for environments (set as defaults) of ground-truth norm 3, 4 and 5.

Owner
Faury Louis
Machine Learning researcher. Interest in bandit algorithms and reinforcement learning. PhD in Machine Learning, obtained in 2021.
Faury Louis
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022