RADIal is available now! Check the download section

Related tags

Deep LearningRADIal
Overview

Watch the video

Latest news:

RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for now a low resolution preview video stream. The full resolution will be provided once the anonymization is completed, planned by 2022, February.

RADIal dataset

RADIal stands for “Radar, Lidar et al.” It's a collection of 2-hour of raw data from synchronized automotive-grade sensors (camera, laser, High Definition radar) in various environments (citystreet, highway, countryside road) and comes with GPS and vehicle’s CAN traces.

RADIal contains 91 sequences of 1 to 4 minutes in duration, for a total of 2 hours. These sequences are categorized in highway, country-side and city driving. The distribution of the sequences is indicated in the figure below. Each sequence contains raw sensor signals recorded with their native frame rate. There are approximately 25,000 frames with the three sensors synchronized, out of which 8,252 are labelled with a total of 9,550 vehicles.

Sensor specifications

Central to the RADIal dataset, our high-definition radar is composed of NRx=16 receiving antennas and NTx= 12 transmitting antennas, leading to NRx·NTx= 192 virtual antennas. This virtual-antenna array enables reaching a high azimuth angular resolution while estimating objects’ elevation angles as well. As the radar signal is difficult to interpret by annotators and practitioners alike, a 16-layer automotive-grade laser scanner (LiDAR) and a 5 Mpix RGB camera are also provided. The camera is placed below the interior mirror behind the windshield while the radar and the LiDAR are installed in the middle of the front ventilation grid, one above the other. The three sensors have parallel horizontallines of sight, pointing in the driving direction. Their extrinsic parameters are provided together with the dataset. RADIal also offers synchronized GPS and CAN traces which give access to the geo-referenced position of the vehicle as well as its driving information such as speed, steering wheelangle and yaw rate. The sensors’ specifications are detailed in the table below.

Dataset structure

RADIal is a unique folder containing all the recorded sequences. Each sequence is a folder containing:

  • A preview video of the scene (low resolution);
  • The camera data compressed in MJPEG format (will be released by 2022, February);
  • The Laser Scanner point cloud data saved in a binary file;
  • The ADC radar data saved in a binary file. There are 4 files in total, one file for each radar chip, each chip containing 4 Rx antennas;
  • The GPS data saved in ASCII format
  • The CAN traces of the vehicle saved in binary format
  • And finally, a log file that provides the timestamp of each individual sensor event.

We provide in a Python library DBReader to read the data. Because all the radar data are recorded in a RAW format, that is to say the signal after the Analog to Digital Conversion (ADC), we provided too an optimized Python library SignalProcessing to process the Radar signal and generate either the Power Spectrums, the Point Cloud or the Range-Azimuth map.

Labels

Out of the 25,000 synchronized frames, 8,252 frames are labelled. Labels for vehicles are stored in a separated csv file. Each label containg the following information:

  • numSample: number of the current synchronized sample between all the sensors. That is to say, this label can be projected in each individual sensor with a common dataset_index value. Note that there might be more than one line with the same numSample, one line per label;
  • [x1_pix, y1_pix, x2_pix, y2_pix]: 2D coordinates of the vehicle' bouding boxes in the camera coordinates;
  • [laser_X_m, laser_Y_m, laser_Z_m]: 3D coordinates of the vehicle in the laser scanner coordinates system. Note that this 3D point is the middle of either the back or front visible face of the vehicle;
  • [radar_X_m, radar_Y_m, radar_R_m, radar_A_deg, radar_D, radar_P_db]: 2D coordinates (bird' eyes view) of the vehicle in the radar coordinates system either in cartesian (X,Y) or polar (R,A) coordinates. radar_D is the Doppler value and radar_P_db is the power of the reflected signal;
  • dataset: name of sequence it belongs to;
  • dataset_index: frame index in the current sequence;
  • Difficult: either 0 or 1

Note that -1 in all field means a frame without any label.

Labels for the Free-driving-space is provided as a segmentaion mask saved in a png file.

Download instructions

To download the raw dataset, please follow these instructions.

$ wget -c -i download_urls.txt -P your_target_path
$ unzip 'your_target_path/*.zip' -d your_target_path
$ rm -Rf your_target_path/*.zip

You will have then to use the SignalProcessing library to generate data for each modalities uppon your need.

We provide too a "ready to use" dataset that can be loaded with the PyTorch data loader example provided in the Loader folder.

$ wget https://www.dropbox.com/s/bvbndch5rucyp97/RADIal.zip
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023