RADIal is available now! Check the download section

Related tags

Deep LearningRADIal
Overview

Watch the video

Latest news:

RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for now a low resolution preview video stream. The full resolution will be provided once the anonymization is completed, planned by 2022, February.

RADIal dataset

RADIal stands for “Radar, Lidar et al.” It's a collection of 2-hour of raw data from synchronized automotive-grade sensors (camera, laser, High Definition radar) in various environments (citystreet, highway, countryside road) and comes with GPS and vehicle’s CAN traces.

RADIal contains 91 sequences of 1 to 4 minutes in duration, for a total of 2 hours. These sequences are categorized in highway, country-side and city driving. The distribution of the sequences is indicated in the figure below. Each sequence contains raw sensor signals recorded with their native frame rate. There are approximately 25,000 frames with the three sensors synchronized, out of which 8,252 are labelled with a total of 9,550 vehicles.

Sensor specifications

Central to the RADIal dataset, our high-definition radar is composed of NRx=16 receiving antennas and NTx= 12 transmitting antennas, leading to NRx·NTx= 192 virtual antennas. This virtual-antenna array enables reaching a high azimuth angular resolution while estimating objects’ elevation angles as well. As the radar signal is difficult to interpret by annotators and practitioners alike, a 16-layer automotive-grade laser scanner (LiDAR) and a 5 Mpix RGB camera are also provided. The camera is placed below the interior mirror behind the windshield while the radar and the LiDAR are installed in the middle of the front ventilation grid, one above the other. The three sensors have parallel horizontallines of sight, pointing in the driving direction. Their extrinsic parameters are provided together with the dataset. RADIal also offers synchronized GPS and CAN traces which give access to the geo-referenced position of the vehicle as well as its driving information such as speed, steering wheelangle and yaw rate. The sensors’ specifications are detailed in the table below.

Dataset structure

RADIal is a unique folder containing all the recorded sequences. Each sequence is a folder containing:

  • A preview video of the scene (low resolution);
  • The camera data compressed in MJPEG format (will be released by 2022, February);
  • The Laser Scanner point cloud data saved in a binary file;
  • The ADC radar data saved in a binary file. There are 4 files in total, one file for each radar chip, each chip containing 4 Rx antennas;
  • The GPS data saved in ASCII format
  • The CAN traces of the vehicle saved in binary format
  • And finally, a log file that provides the timestamp of each individual sensor event.

We provide in a Python library DBReader to read the data. Because all the radar data are recorded in a RAW format, that is to say the signal after the Analog to Digital Conversion (ADC), we provided too an optimized Python library SignalProcessing to process the Radar signal and generate either the Power Spectrums, the Point Cloud or the Range-Azimuth map.

Labels

Out of the 25,000 synchronized frames, 8,252 frames are labelled. Labels for vehicles are stored in a separated csv file. Each label containg the following information:

  • numSample: number of the current synchronized sample between all the sensors. That is to say, this label can be projected in each individual sensor with a common dataset_index value. Note that there might be more than one line with the same numSample, one line per label;
  • [x1_pix, y1_pix, x2_pix, y2_pix]: 2D coordinates of the vehicle' bouding boxes in the camera coordinates;
  • [laser_X_m, laser_Y_m, laser_Z_m]: 3D coordinates of the vehicle in the laser scanner coordinates system. Note that this 3D point is the middle of either the back or front visible face of the vehicle;
  • [radar_X_m, radar_Y_m, radar_R_m, radar_A_deg, radar_D, radar_P_db]: 2D coordinates (bird' eyes view) of the vehicle in the radar coordinates system either in cartesian (X,Y) or polar (R,A) coordinates. radar_D is the Doppler value and radar_P_db is the power of the reflected signal;
  • dataset: name of sequence it belongs to;
  • dataset_index: frame index in the current sequence;
  • Difficult: either 0 or 1

Note that -1 in all field means a frame without any label.

Labels for the Free-driving-space is provided as a segmentaion mask saved in a png file.

Download instructions

To download the raw dataset, please follow these instructions.

$ wget -c -i download_urls.txt -P your_target_path
$ unzip 'your_target_path/*.zip' -d your_target_path
$ rm -Rf your_target_path/*.zip

You will have then to use the SignalProcessing library to generate data for each modalities uppon your need.

We provide too a "ready to use" dataset that can be loaded with the PyTorch data loader example provided in the Loader folder.

$ wget https://www.dropbox.com/s/bvbndch5rucyp97/RADIal.zip
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022