RADIal is available now! Check the download section

Related tags

Deep LearningRADIal
Overview

Watch the video

Latest news:

RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for now a low resolution preview video stream. The full resolution will be provided once the anonymization is completed, planned by 2022, February.

RADIal dataset

RADIal stands for “Radar, Lidar et al.” It's a collection of 2-hour of raw data from synchronized automotive-grade sensors (camera, laser, High Definition radar) in various environments (citystreet, highway, countryside road) and comes with GPS and vehicle’s CAN traces.

RADIal contains 91 sequences of 1 to 4 minutes in duration, for a total of 2 hours. These sequences are categorized in highway, country-side and city driving. The distribution of the sequences is indicated in the figure below. Each sequence contains raw sensor signals recorded with their native frame rate. There are approximately 25,000 frames with the three sensors synchronized, out of which 8,252 are labelled with a total of 9,550 vehicles.

Sensor specifications

Central to the RADIal dataset, our high-definition radar is composed of NRx=16 receiving antennas and NTx= 12 transmitting antennas, leading to NRx·NTx= 192 virtual antennas. This virtual-antenna array enables reaching a high azimuth angular resolution while estimating objects’ elevation angles as well. As the radar signal is difficult to interpret by annotators and practitioners alike, a 16-layer automotive-grade laser scanner (LiDAR) and a 5 Mpix RGB camera are also provided. The camera is placed below the interior mirror behind the windshield while the radar and the LiDAR are installed in the middle of the front ventilation grid, one above the other. The three sensors have parallel horizontallines of sight, pointing in the driving direction. Their extrinsic parameters are provided together with the dataset. RADIal also offers synchronized GPS and CAN traces which give access to the geo-referenced position of the vehicle as well as its driving information such as speed, steering wheelangle and yaw rate. The sensors’ specifications are detailed in the table below.

Dataset structure

RADIal is a unique folder containing all the recorded sequences. Each sequence is a folder containing:

  • A preview video of the scene (low resolution);
  • The camera data compressed in MJPEG format (will be released by 2022, February);
  • The Laser Scanner point cloud data saved in a binary file;
  • The ADC radar data saved in a binary file. There are 4 files in total, one file for each radar chip, each chip containing 4 Rx antennas;
  • The GPS data saved in ASCII format
  • The CAN traces of the vehicle saved in binary format
  • And finally, a log file that provides the timestamp of each individual sensor event.

We provide in a Python library DBReader to read the data. Because all the radar data are recorded in a RAW format, that is to say the signal after the Analog to Digital Conversion (ADC), we provided too an optimized Python library SignalProcessing to process the Radar signal and generate either the Power Spectrums, the Point Cloud or the Range-Azimuth map.

Labels

Out of the 25,000 synchronized frames, 8,252 frames are labelled. Labels for vehicles are stored in a separated csv file. Each label containg the following information:

  • numSample: number of the current synchronized sample between all the sensors. That is to say, this label can be projected in each individual sensor with a common dataset_index value. Note that there might be more than one line with the same numSample, one line per label;
  • [x1_pix, y1_pix, x2_pix, y2_pix]: 2D coordinates of the vehicle' bouding boxes in the camera coordinates;
  • [laser_X_m, laser_Y_m, laser_Z_m]: 3D coordinates of the vehicle in the laser scanner coordinates system. Note that this 3D point is the middle of either the back or front visible face of the vehicle;
  • [radar_X_m, radar_Y_m, radar_R_m, radar_A_deg, radar_D, radar_P_db]: 2D coordinates (bird' eyes view) of the vehicle in the radar coordinates system either in cartesian (X,Y) or polar (R,A) coordinates. radar_D is the Doppler value and radar_P_db is the power of the reflected signal;
  • dataset: name of sequence it belongs to;
  • dataset_index: frame index in the current sequence;
  • Difficult: either 0 or 1

Note that -1 in all field means a frame without any label.

Labels for the Free-driving-space is provided as a segmentaion mask saved in a png file.

Download instructions

To download the raw dataset, please follow these instructions.

$ wget -c -i download_urls.txt -P your_target_path
$ unzip 'your_target_path/*.zip' -d your_target_path
$ rm -Rf your_target_path/*.zip

You will have then to use the SignalProcessing library to generate data for each modalities uppon your need.

We provide too a "ready to use" dataset that can be loaded with the PyTorch data loader example provided in the Loader folder.

$ wget https://www.dropbox.com/s/bvbndch5rucyp97/RADIal.zip
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022