Open-source implementation of Google Vizier for hyper parameters tuning

Overview

Advisor

Introduction

Advisor is the hyper parameters tuning system for black box optimization.

It is the open-source implementation of Google Vizier with these features.

  • Easy to use with API, SDK, WEB and CLI
  • Support abstractions of Study and Trial
  • Included search and early stop algorithms
  • Recommend parameters with trained model
  • Same programming interfaces as Google Vizier
  • Command-line tool just like Microsoft NNI.

Supported Algorithms

  • Grid Search
  • Random Search
  • Bayesian Optimization
  • TPE(Hyperopt)
  • Random Search(Hyperopt)
  • Simulate Anneal(Hyperopt)
  • Quasi Random(Chocolate)
  • Grid Search(Chocolate)
  • Random Search(Chocolate)
  • Bayes(Chocolate)
  • CMAES(Chocolate)
  • MOCMAES(Chocolate)
  • SMAC Algorithm
  • Bayesian Optimization(Skopt)
  • Early Stop First Trial Algorithm
  • Early Stop Descending Algorithm
  • Performance Curve Stop Algorithm

Quick Start

It is easy to setup advisor service in local machine.

pip install advisor

advisor_admin server start

Then go to http://127.0.0.1:8000 in the browser and submit tuning jobs.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

advisor run -f ./advisor_client/examples/python_function/config.json

advisor study describe -s demo

Advisor Server

Run server with official package.

advisor_admin server start

Or run with official docker image.

docker run -d -p 8000:8000 tobegit3hub/advisor

Or run with docker-compose.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/docker-compose.yml

docker-compose up -d

Or run in Kubernetes cluster.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/kubernetes_advisor.yaml

kubectl create -f ./kubernetes_advisor.yaml

Or run from scratch with source code.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

pip install -r ./requirements.txt

./manage.py migrate

./manage.py runserver 0.0.0.0:8000

Advisor Client

Install with pip or use docker container.

pip install advisor

docker run -it --net=host tobegit3hub/advisor bash

Use the command-line tool.

export ADVISOR_ENDPOINT="http://127.0.0.1:8000"

advisor study list

advisor study describe -s "demo"

advisor trial list --study_name "demo"

Use admin tool to start/stop server.

advisor_admin server start

advisor_admin server stop

Use the Python SDK.

client = AdvisorClient()

# Create the study
study_configuration = {
        "goal": "MAXIMIZE",
        "params": [
                {
                        "parameterName": "hidden1",
                        "type": "INTEGER",
                        "minValue": 40,
                        "maxValue": 400,
                        "scalingType": "LINEAR"
                }
        ]
}
study = client.create_study("demo", study_configuration)

# Get suggested trials
trials = client.get_suggestions(study, 3)

# Complete the trial
trial = trials[0]
trial_metrics = 1.0
client.complete_trial(trial, trial_metrics)

Please checkout examples for more usage.

Configuration

Study configuration describe the search space of parameters. It supports four types and here is the example.

{
  "goal": "MAXIMIZE",
  "randomInitTrials": 1,
  "maxTrials": 5,
  "maxParallelTrials": 1,
  "params": [
    {
      "parameterName": "hidden1",
      "type": "INTEGER",
      "minValue": 1,
      "maxValue": 10,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "learning_rate",
      "type": "DOUBLE",
      "minValue": 0.01,
      "maxValue": 0.5,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "hidden2",
      "type": "DISCRETE",
      "feasiblePoints": "8, 16, 32, 64",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "optimizer",
      "type": "CATEGORICAL",
      "feasiblePoints": "sgd, adagrad, adam, ftrl",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "batch_normalization",
      "type": "CATEGORICAL",
      "feasiblePoints": "true, false",
      "scalingType": "LINEAR"
    }
  ]
}

Here is the configuration file in JSON format for advisor run.

{
  "name": "demo",
  "algorithm": "BayesianOptimization",
  "trialNumber": 10,
  "concurrency": 1,
  "path": "./advisor_client/examples/python_function/",
  "command": "./min_function.py",
  "search_space": {
      "goal": "MINIMIZE",
      "randomInitTrials": 3,
      "params": [
          {
              "parameterName": "x",
              "type": "DOUBLE",
              "minValue": -10.0,
              "maxValue": 10.0,
              "scalingType": "LINEAR"
          }
      ]
  }
}

Or use the equivalent configuration file in YAML format.

name: "demo"
algorithm: "BayesianOptimization"
trialNumber: 10
path: "./advisor_client/examples/python_function/"
command: "./min_function.py"
search_space:
  goal: "MINIMIZE"
  randomInitTrials: 3
  params:
    - parameterName: "x"
      type: "DOUBLE"
      minValue: -10.0
      maxValue: 10.0

Screenshots

List all the studies and create/delete the studies easily.

study_list.png

List the detail of study and all the related trials.

study_detail.png

List all the trials and create/delete the trials easily.

trial_list.png

List the detail of trial and all the related metrics.

trial_detail.png

Development

You can edit the source code and test without re-deploying the server and client.

git clone [email protected]:tobegit3hub/advisor.git

cd ./advisor/advisor_client/

python ./setup.py develop

export PYTHONPATH="/Library/Python/2.7/site-packages/:$PYTHONPATH"
Owner
tobe
Work in @Xiaomi, @UnitedStack and @4Paradigm for Storage(HBase), IaaS(OpenStack, Kubernetes), Big data(Spark, Flink) and Machine Learning(TensorFlow).
tobe
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022