Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Overview

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Introduction

image

This is the official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022). We evaluate our methods on three datasets, DRIVE, CHASE_DB1 and STARE.

Datesets

You can download the three datasets from Google drive.
Of course, you can download the dataset from DRIVE, CHASE_DB1 and STARE respectively.

Quick start

Requirement

  1. Refer to Pytorch to install Pytorch >= 1.1.
  2. pip install -r requirements.txt

Config file

DATASET: "DRIVE"

TRAIN_DATA_PATH: ".../training/images" # modify it to your own path
TRAIN_LABEL_PATH: ".../training/1st_manual"


TEST_DATA_PATH: ".../test/images"
TEST_PRED_PATH: "results/test/DRIVE/prediction"
TEST_LABEL_PATH: ".../test/label/1st_manual"

# view
#VAL_PICTURE_PATH: "/gdata1/limx/mx/dataset/Drive19/visualization"
#VIEW_VAL_PATH: "results/val_view"
#VIEW_TRAIN_PATH: "results/train_view"

MODEL_PATH: "results/test/DRIVE/model"
LOG_PATH: "results/test/DRIVE/logging.txt"

# train
LEARNING_RATE: 0.005
BATCH_SIZE: 5
EPOCH: 6000
CHECK_BATCH: 50
multi_scale: [0.3]
INPUT_CHANNEL: 3
MAX_AFFINITY: 5
RCE_WEIGHT: 1
RCE_RATIO: 10

# inference
MODEL_NUMBER: "epoch_2750_f1_0.8261"
# load breakpoint
IS_BREAKPOINT: False
BREAKPOINT: ""


Please modify TRAIN_DATA_PATH, TRAIN_LABEL_PATH, TEST_DATA_PATH and TEST_LABEL_PATH.

Training

Please specify the configuration file.
For example, you can run .sh file to train the specific dataset.

cd rootdir
sh pbs/DRIVE_RUN.sh

After finishing the training stage, you will obtain the /results/test/DRIVE/logging.txt. The logging.txt file can log the metrics, like model number, f1, auc, acc, specificity, precision, sensitivity.

Testing

Please select the best model in loggging.txt and modify the MODEL_NUMBER in configuration file.

cd rootdir
python inference.py --lib/DRIVE.yaml 

Evaluation

To evalutate the results offline bewteen cfg['TEST_PRED_PATH'] and cfg['TEST_LABEL_PATH']. Your can run the code like it.

cd rootdir
python eval.py --lib/DRIVE.yaml 
Owner
anonymous
anonymous
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022