Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Overview

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image

This repository contains the PyTorch implementation of the paper: Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen, Li-Yi Wei, Yi Ma. "Learning to Reconstruct 3D Manhattan Wireframes From a Single Image", ICCV 2019.

Introduction

The goal of this project is to explore the idea of reconstructing high-quality compact CAD-like 3D models from images. We propose a method to create accurate 3D wireframe representation from a single image by exploiting global structural regularities. Our method uses a convolutional neural network to simultaneously detect salient junctions and straight lines, as well as predict their 3D depth and vanishing points.

Qualitative Results

Input Predicted Input Predicted

Code Structure

Below is a quick overview of the function of key files.

########################### Data ###########################
data/
    SU3/                        # default folder for the scenecity 3D dataset
logs/                           # default folder for storing the output during training
########################### Code ###########################
config/                         # neural network hyper-parameters and configurations
wireframe/                      # module so you can "import wireframe" in scripts
train.py                        # script for training and evaluating the neural network
vectorize_u3d.py                # script for turning the 2.5D results into 3D wireframe

Reproducing Results

Installation

You are suggested to install miniconda before following executing the following commands.

git clone https://github.com/zhou13/shapeunity
cd shapeunity
conda create -y -n shapeunity
source activate shapeunity
conda install -y pyyaml docopt matplotlib scikit-image opencv tqdm
# Replace cudatoolkit=10.2 with your CUDA version: https://pytorch.org/get-started/
conda install -y pytorch cudatoolkit=10.2 -c pytorch
python -m pip install --upgrade vispy cvxpy
mkdir data logs

Downloading the Processed Datasets

Make sure curl is installed on your system and execute

cd data
../misc/gdrive-download.sh 1-TABJjT4-_yzE-iRD-n_yIJ9Kwzzkm7X SU3.zip
unzip SU3.zip
rm *.zip
cd ..

Note: If your downloaded zip file is corrupted, it is likely due to the restriction on the amount of data that can be downloaded from my account per day. In that case, you can try to download the pre-processed dataset manually from our Google Drive and proceed accordingly.

Downloading the Pre-trained Models

Execute the following command to download and unzip the pre-trained models.

cd logs
../misc/gdrive-download.sh 1AuE3yje7jTRne2KjiVdxAWo1UT03i16a pretrained-wireframe.zip
../misc/gdrive-download.sh 1YwPMbAHnxSA3BgiM5Q26mKSTjd46OYRo pretrained-vanishing-points.zip
unzip pretrained-wireframe.zip
unzip pretrained-vanishing-points.zip
rm *.zip
cd ..

Alternatively, you can download them at this Google Drive link and this Google Drive link, respectively.

Training (Optional)

If you want to train the model yourself rather than using the pre-trained models, execute the following commands to train the neural networks from scratch with four GPUs (specified by -d 0,1,2,3):

python ./train.py -d 0,1,2,3 --identifier baseline config/hourglass.yaml

The checkpoints and logs will be written to logs/ accordingly.

We note that vanishing points are only supported by the neural network under the git branch vanishing-points. You need to visit that part of the code with git checkout vanishing-points for training the network with the vanishing point branch.

Predicting the 2.5D Wireframe (Optional)

Execute the following command to evaluate the neural network on the validation split:

python train.py --eval -d 0 -i default --from logs/pretrained-wireframe/checkpoint_latest.pth.tar logs/pretrained-wireframe/config.yaml

This command should generate a new folder under the logs directory with results in the npz folders.

Vectorization & Visualization

To visualize the working examples of ShapeUnity, execute the following commands:

python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 57
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 100
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 109
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 141
python vectorize_u3d.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000 299

Evaluation (Optional)

To quantitatively evaluate the wireframe quality of ShapeUnity, execute the following command:

python eval_2d3d_metric.py logs/pretrained-wireframe/npz/003576000 --vpdir logs/pretrained-vanishing-points/npz/000096000

The details of the sAP-10 metric can be found in the paper LCNN.

Acknowledgement

This work is supported by a research grant from Sony Research. We thank Xili Dai for providing the sAP evaluation script for the project.

Citing ShapeUnity

If you find this project useful in your research, please consider citing:

@inproceedings{zhou2019learning,
  title={Learning to Reconstruct 3D Manhattan Wireframes From a Single Image},
  author={Zhou, Yichao and Qi, Haozhi and Zhai, Yuexiang and Sun, Qi and Chen, Zhili and Wei, Li-Yi and Ma, Yi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2019}
}
Owner
Yichao Zhou
Apple Inc. | Ph.D. at UC Berkeley
Yichao Zhou
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022