ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

Related tags

Deep Learningvivit
Overview

[ ๐Ÿ‘ท ๐Ÿ— ๐Ÿ‘ท ๐Ÿ— Coming soon! Official release with improved docs. Stay tuned. ๐Ÿ‘ท ๐Ÿ— ๐Ÿ‘ท ๐Ÿ— ]

ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

Python 3.7+ [tests]

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

  • GGN eigenvalues
  • GGN eigenpairs (eigenvalues + eigenvector)
  • 1หขแต—- and 2โฟแตˆ-order directional derivatives along GGN eigenvectors
  • Newton steps

These operations can also further approximate the GGN to reduce cost via sub-sampling, Monte-Carlo approximation, and block-diagonal approximation.

How does it work? ViViT uses and extends BackPACK for PyTorch. The described functionality is realized through a combination of existing and new BackPACK extensions and hooks into its backpropagation.

Installation

๐Ÿ‘ท ๐Ÿ— ๐Ÿ‘ท ๐Ÿ— The PyPI release is coming soon. ๐Ÿ‘ท ๐Ÿ— ๐Ÿ‘ท ๐Ÿ—

For now, you need to install from GitHub via

pip install vivit-for-pytorch@git+https://github.com/f-dangel/vivit.git#egg=vivit-for-pytorch

Examples

๐Ÿ‘ท ๐Ÿ— ๐Ÿ‘ท ๐Ÿ— Coming soon! ๐Ÿ‘ท ๐Ÿ— ๐Ÿ‘ท ๐Ÿ—

How to cite

If you are using ViViT, consider citing the paper

@misc{dangel2022vivit,
      title={{ViViT}: Curvature access through the generalized Gauss-Newton's low-rank structure},
      author={Felix Dangel and Lukas Tatzel and Philipp Hennig},
      year={2022},
      eprint={2106.02624},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Comments
  • [ADD] Warn about instabilities if eigenvalues are small

    [ADD] Warn about instabilities if eigenvalues are small

    The directional gradient computation and transformation of the Newton step from Gram space into parameter space require division by the square root of the direction's eigenvalue. This is unstable if the eigenvalue is close to zero.

    opened by f-dangel 1
  • [ADD] Clean `DirectionalDampedNewtonComputation`

    [ADD] Clean `DirectionalDampedNewtonComputation`

    Adds directionally damped Newton step computation with cleaned up API.

    • Fixes a bug in the eigenvalue criterion in the tests. It always picked one more eigenvalue than specified.
    opened by f-dangel 1
  • [DOC] Add NTK example

    [DOC] Add NTK example

    Adds an example inspired by the functorch tutorial on NTKs. It demonstrates how to use vivit to compute empirical NTK matrices and makes a comparison with the functorch implementation.

    opened by f-dangel 1
  • [ADD] Simplify `DirectionalDerivatives` API

    [ADD] Simplify `DirectionalDerivatives` API

    Exotic features, like using different GGNs to compute directions and directional curvatures, as well as full control of which intermediate buffers to keep, have been deprecated in favor of a simpler API.

    • Remove Newton step computation for now as it was internally relying on DirectionalDerivatives
    • Remove many utilities and associated tests from the exotic features
    • Forbid duplicate indices in subsampling
    • Always delete intermediate buffers other than the target quantities
    opened by f-dangel 1
  • [DOC] Set up `sphinx` and RTD

    [DOC] Set up `sphinx` and RTD

    This PR adds a scaffold for the doc at https://vivit.readthedocs.io/en/latest/. Code examples are integrated via sphinx-gallery (I added a preliminary logo). Pull requests are built by the CI.

    To build the docs, run make docs. You need to install the dependencies first, for example using pip install -e .[docs].

    opened by f-dangel 1
  • Calculate Parameter Space Values of GGN Eigenvectors

    Calculate Parameter Space Values of GGN Eigenvectors

    The docs show how to calculate the gram matrix eigenvectors and the paper articulates that to translate from 'gram space' to parameter space we just need to multiply by the 'V' matrix.

    What's the easiest way of implementing this?

    question 
    opened by lk-wq 1
  • Detect loss function's `reduction`, error if unsupported

    Detect loss function's `reduction`, error if unsupported

    For now, the library only supports reduction='mean'. We rely on the user to use this reduction and raise awareness about this point in the documentation. It would be better to automatically have the library detect the reduction and error if it is unsupported.

    This can be done via a hook into BackPACK.

    • [ ] Implement hook that determines the loss function reduction during backpropagation
    • [ ] Integrate the above hook into the *Computation and raise an exception if the reduction is not supported
    • [ ] Remove the comments about supported reductions in the documentation
    enhancement 
    opened by f-dangel 0
Releases(1.0.0)
Owner
Felix Dangel
Machine Learning PhD student at the University of Tรผbingen and the Max Planck Institute for Intelligent Systems.
Felix Dangel
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT๋ฅผ ํ™œ์šฉํ•œ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ์ƒํ™ฉ์ธ์ง€(2020 ์ธ๊ณต์ง€๋Šฅ ๊ทธ๋žœ๋“œ ์ฑŒ๋ฆฐ์ง€) ๋ณธ ํ”„๋กœ์ ํŠธ๋Š” ETRI์—์„œ ์ œ๊ณต๋œ ํ•œ๊ตญ์–ด korBERT ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ํญ๋ ฅ ๊ธฐ๋ฐ˜ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ถ„๋ฅ˜ ๋ชจ๋ธ๋“ค์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ฐธ์—ฌํ•œ 2020 ์ธ๊ณต์ง€

Young-Seok Choi 23 Jan 25, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Mรผller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022