ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

Related tags

Deep Learningvivit
Overview

[ πŸ‘· πŸ— πŸ‘· πŸ— Coming soon! Official release with improved docs. Stay tuned. πŸ‘· πŸ— πŸ‘· πŸ— ]

ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

Python 3.7+ [tests]

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

  • GGN eigenvalues
  • GGN eigenpairs (eigenvalues + eigenvector)
  • 1Λ’α΅—- and 2ⁿᡈ-order directional derivatives along GGN eigenvectors
  • Newton steps

These operations can also further approximate the GGN to reduce cost via sub-sampling, Monte-Carlo approximation, and block-diagonal approximation.

How does it work? ViViT uses and extends BackPACK for PyTorch. The described functionality is realized through a combination of existing and new BackPACK extensions and hooks into its backpropagation.

Installation

πŸ‘· πŸ— πŸ‘· πŸ— The PyPI release is coming soon. πŸ‘· πŸ— πŸ‘· πŸ—

For now, you need to install from GitHub via

pip install vivit-for-pytorch@git+https://github.com/f-dangel/vivit.git#egg=vivit-for-pytorch

Examples

πŸ‘· πŸ— πŸ‘· πŸ— Coming soon! πŸ‘· πŸ— πŸ‘· πŸ—

How to cite

If you are using ViViT, consider citing the paper

@misc{dangel2022vivit,
      title={{ViViT}: Curvature access through the generalized Gauss-Newton's low-rank structure},
      author={Felix Dangel and Lukas Tatzel and Philipp Hennig},
      year={2022},
      eprint={2106.02624},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Comments
  • [ADD] Warn about instabilities if eigenvalues are small

    [ADD] Warn about instabilities if eigenvalues are small

    The directional gradient computation and transformation of the Newton step from Gram space into parameter space require division by the square root of the direction's eigenvalue. This is unstable if the eigenvalue is close to zero.

    opened by f-dangel 1
  • [ADD] Clean `DirectionalDampedNewtonComputation`

    [ADD] Clean `DirectionalDampedNewtonComputation`

    Adds directionally damped Newton step computation with cleaned up API.

    • Fixes a bug in the eigenvalue criterion in the tests. It always picked one more eigenvalue than specified.
    opened by f-dangel 1
  • [DOC] Add NTK example

    [DOC] Add NTK example

    Adds an example inspired by the functorch tutorial on NTKs. It demonstrates how to use vivit to compute empirical NTK matrices and makes a comparison with the functorch implementation.

    opened by f-dangel 1
  • [ADD] Simplify `DirectionalDerivatives` API

    [ADD] Simplify `DirectionalDerivatives` API

    Exotic features, like using different GGNs to compute directions and directional curvatures, as well as full control of which intermediate buffers to keep, have been deprecated in favor of a simpler API.

    • Remove Newton step computation for now as it was internally relying on DirectionalDerivatives
    • Remove many utilities and associated tests from the exotic features
    • Forbid duplicate indices in subsampling
    • Always delete intermediate buffers other than the target quantities
    opened by f-dangel 1
  • [DOC] Set up `sphinx` and RTD

    [DOC] Set up `sphinx` and RTD

    This PR adds a scaffold for the doc at https://vivit.readthedocs.io/en/latest/. Code examples are integrated via sphinx-gallery (I added a preliminary logo). Pull requests are built by the CI.

    To build the docs, run make docs. You need to install the dependencies first, for example using pip install -e .[docs].

    opened by f-dangel 1
  • Calculate Parameter Space Values of GGN Eigenvectors

    Calculate Parameter Space Values of GGN Eigenvectors

    The docs show how to calculate the gram matrix eigenvectors and the paper articulates that to translate from 'gram space' to parameter space we just need to multiply by the 'V' matrix.

    What's the easiest way of implementing this?

    question 
    opened by lk-wq 1
  • Detect loss function's `reduction`, error if unsupported

    Detect loss function's `reduction`, error if unsupported

    For now, the library only supports reduction='mean'. We rely on the user to use this reduction and raise awareness about this point in the documentation. It would be better to automatically have the library detect the reduction and error if it is unsupported.

    This can be done via a hook into BackPACK.

    • [ ] Implement hook that determines the loss function reduction during backpropagation
    • [ ] Integrate the above hook into the *Computation and raise an exception if the reduction is not supported
    • [ ] Remove the comments about supported reductions in the documentation
    enhancement 
    opened by f-dangel 0
Releases(1.0.0)
Owner
Felix Dangel
Machine Learning PhD student at the University of TΓΌbingen and the Max Planck Institute for Intelligent Systems.
Felix Dangel
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter β €β € A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur CΓ’mara 2 Mar 02, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023