ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

Related tags

Deep Learningvivit
Overview

[ 👷 🏗 👷 🏗 Coming soon! Official release with improved docs. Stay tuned. 👷 🏗 👷 🏗 ]

ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

Python 3.7+ [tests]

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

  • GGN eigenvalues
  • GGN eigenpairs (eigenvalues + eigenvector)
  • 1ˢᵗ- and 2ⁿᵈ-order directional derivatives along GGN eigenvectors
  • Newton steps

These operations can also further approximate the GGN to reduce cost via sub-sampling, Monte-Carlo approximation, and block-diagonal approximation.

How does it work? ViViT uses and extends BackPACK for PyTorch. The described functionality is realized through a combination of existing and new BackPACK extensions and hooks into its backpropagation.

Installation

👷 🏗 👷 🏗 The PyPI release is coming soon. 👷 🏗 👷 🏗

For now, you need to install from GitHub via

pip install vivit-for-pytorch@git+https://github.com/f-dangel/vivit.git#egg=vivit-for-pytorch

Examples

👷 🏗 👷 🏗 Coming soon! 👷 🏗 👷 🏗

How to cite

If you are using ViViT, consider citing the paper

@misc{dangel2022vivit,
      title={{ViViT}: Curvature access through the generalized Gauss-Newton's low-rank structure},
      author={Felix Dangel and Lukas Tatzel and Philipp Hennig},
      year={2022},
      eprint={2106.02624},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Comments
  • [ADD] Warn about instabilities if eigenvalues are small

    [ADD] Warn about instabilities if eigenvalues are small

    The directional gradient computation and transformation of the Newton step from Gram space into parameter space require division by the square root of the direction's eigenvalue. This is unstable if the eigenvalue is close to zero.

    opened by f-dangel 1
  • [ADD] Clean `DirectionalDampedNewtonComputation`

    [ADD] Clean `DirectionalDampedNewtonComputation`

    Adds directionally damped Newton step computation with cleaned up API.

    • Fixes a bug in the eigenvalue criterion in the tests. It always picked one more eigenvalue than specified.
    opened by f-dangel 1
  • [DOC] Add NTK example

    [DOC] Add NTK example

    Adds an example inspired by the functorch tutorial on NTKs. It demonstrates how to use vivit to compute empirical NTK matrices and makes a comparison with the functorch implementation.

    opened by f-dangel 1
  • [ADD] Simplify `DirectionalDerivatives` API

    [ADD] Simplify `DirectionalDerivatives` API

    Exotic features, like using different GGNs to compute directions and directional curvatures, as well as full control of which intermediate buffers to keep, have been deprecated in favor of a simpler API.

    • Remove Newton step computation for now as it was internally relying on DirectionalDerivatives
    • Remove many utilities and associated tests from the exotic features
    • Forbid duplicate indices in subsampling
    • Always delete intermediate buffers other than the target quantities
    opened by f-dangel 1
  • [DOC] Set up `sphinx` and RTD

    [DOC] Set up `sphinx` and RTD

    This PR adds a scaffold for the doc at https://vivit.readthedocs.io/en/latest/. Code examples are integrated via sphinx-gallery (I added a preliminary logo). Pull requests are built by the CI.

    To build the docs, run make docs. You need to install the dependencies first, for example using pip install -e .[docs].

    opened by f-dangel 1
  • Calculate Parameter Space Values of GGN Eigenvectors

    Calculate Parameter Space Values of GGN Eigenvectors

    The docs show how to calculate the gram matrix eigenvectors and the paper articulates that to translate from 'gram space' to parameter space we just need to multiply by the 'V' matrix.

    What's the easiest way of implementing this?

    question 
    opened by lk-wq 1
  • Detect loss function's `reduction`, error if unsupported

    Detect loss function's `reduction`, error if unsupported

    For now, the library only supports reduction='mean'. We rely on the user to use this reduction and raise awareness about this point in the documentation. It would be better to automatically have the library detect the reduction and error if it is unsupported.

    This can be done via a hook into BackPACK.

    • [ ] Implement hook that determines the loss function reduction during backpropagation
    • [ ] Integrate the above hook into the *Computation and raise an exception if the reduction is not supported
    • [ ] Remove the comments about supported reductions in the documentation
    enhancement 
    opened by f-dangel 0
Releases(1.0.0)
Owner
Felix Dangel
Machine Learning PhD student at the University of Tübingen and the Max Planck Institute for Intelligent Systems.
Felix Dangel
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022