Generative Flow Networks

Related tags

Deep Learninggflownet
Overview

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation

Implementation for our paper, submitted to NeurIPS 2021 (also check this high-level blog post).

This is a minimum working version of the code used for the paper, which is extracted from the internal repository of the Mila Molecule Discovery project. Original commits are lost here, but the credit for this code goes to @bengioe, @MJ10 and @MKorablyov (see paper).

Grid experiments

Requirements for base experiments:

  • torch numpy scipy tqdm

Additional requirements for active learning experiments:

  • botorch gpytorch

Molecule experiments

Additional requirements:

  • pandas rdkit torch_geometric h5py
  • a few biochemistry programs, see mols/Programs/README

For rdkit in particular we found it to be easier to install through (mini)conda. torch_geometric has non-trivial installation instructions.

We compress the 300k molecule dataset for size. To uncompress it, run cd mols/data/; gunzip docked_mols.h5.gz.

We omit docking routines since they are part of a separate contribution still to be submitted. These are available on demand, please do reach out to [email protected] or [email protected].

Comments
  • Error: Tensors used as indices must be long, byte or bool tensors

    Error: Tensors used as indices must be long, byte or bool tensors

    Dear authors, thanks for sharing the code for this wonderful work!

    I am currently trying to run the naive gflownet training code in molecular docking setting by running python gflownet.py under the mols directory. I have unzipped the datasets and have all requirements installed. And I have successfully run the model in the toy grid environment.

    However, I got this error when I run in the mols environment:

    Exception while sampling: tensors used as indices must be long, byte or bool tensors

    And when I further look up, it seems like the problem occurs around the line 70 in model_block.py. I tried to print out the stem_block_batch_idx but it doesn't seems like could be transfered to long type directly, which is required by an index:

    tensor([[-8.4156e-02, -4.2767e-02, -7.2483e-02, -3.3011e-02, -1.1865e-02, 2.0981e-03, 1.3293e-02, -7.3515e-03, -4.1853e-02, 2.1048e-02, 3.8597e-02, -1.5558e-02, 2.1581e-02, 4.9257e-03, 9.5167e-02, 4.0965e-02, 2.0146e-02, -5.5610e-02, -3.5318e-02, -3.1394e-02, 7.2078e-02, 1.8894e-02, -3.0249e-02, 2.9740e-02, 5.6950e-02, -3.8425e-02, 2.8620e-02, 9.2052e-02, -8.5357e-03, 1.6788e-02, 7.7801e-02, -4.2119e-02, 1.3606e-02, 7.5316e-02, 4.7131e-02, -4.3429e-03, 1.4157e-04, 2.0939e-02, -2.3499e-02, -6.5888e-02, -2.8960e-02, 3.1548e-02, -9.2680e-03, 5.4192e-02, -9.6579e-03, 2.0602e-02, 1.8935e-02, 4.1228e-03, -6.3467e-02, 3.6747e-02, 1.4168e-02, -6.1473e-03, -1.9472e-02, -3.3970e-02, -5.7308e-03, -4.6021e-02, -3.8956e-02, 4.7375e-02, -8.4562e-02, -1.0087e-02, 2.0478e-02, -6.8286e-02, 5.4663e-02, -5.1468e-02, 1.2617e-02, 2.4625e-02, 5.2167e-02, 5.7779e-02, -5.7788e-02, -1.3323e-02, 1.3913e-02, -7.4439e-02, -4.0981e-02, 5.0797e-02, -5.6230e-02, -5.0963e-02, -5.5488e-02, -2.7339e-02, 1.0469e-02, 3.4695e-02, -3.2623e-02, 7.6694e-03, -5.8748e-03, 7.0495e-02, -2.2805e-02, -5.4334e-03, -2.1636e-02, 1.9597e-02, 6.2370e-02, -2.4995e-02, 1.6165e-02, -4.6878e-03, 2.9743e-02, 1.2653e-02, -5.4271e-02, 1.1247e-02, -3.8340e-03, -4.7489e-02, 1.5719e-02, 3.2552e-02, 6.0665e-02, -1.2330e-02, 2.6115e-02, -2.7376e-02, 3.4152e-02, -1.0086e-02, -2.4257e-02, 3.2202e-02, -3.2659e-02, 8.6094e-02, -3.1996e-02, 7.8751e-02, 4.5367e-02, -3.8693e-02, -3.6531e-02, 6.7311e-03, 3.2884e-02, -3.2774e-02, -3.8855e-02, 2.8814e-02, 4.3942e-02, -1.3374e-02, 3.0905e-02, -7.0064e-02, -5.7230e-03, 4.5093e-02, 3.8167e-02, -3.0602e-02, -4.0387e-02, -1.5985e-02, -9.5962e-02, -1.1354e-02, 2.0879e-02, 1.4092e-02, -3.8405e-02, 1.4337e-02, -6.0682e-02, -9.0190e-03, -5.0898e-02, -4.7344e-02, 4.1045e-02, -6.7031e-02, 8.8112e-02, 3.2149e-02, 3.7748e-02, -4.0757e-02, 1.4378e-02, -1.0749e-01, 6.1679e-02, -6.7268e-03, -2.7889e-02, -5.9315e-02, -5.5883e-02, -2.6489e-02, 7.3640e-02, 1.8273e-02, -5.2330e-02, -7.7003e-05, 6.8413e-04, -1.4364e-01, -1.9389e-02, 4.5649e-02, -4.0468e-02, -4.2819e-02, 4.5874e-02, -1.6481e-02, 1.2627e-02, -8.4941e-02, -3.7458e-02, 2.1359e-02, -9.2863e-02, -3.4932e-03, 7.1990e-02, 6.2144e-02, 8.1462e-02, -2.0569e-02, 5.9194e-02, 1.6996e-03, 8.0618e-03, 6.1753e-02, 4.1602e-02, 1.0910e-02, 2.0523e-02, -9.9781e-04, 1.9131e-02, -1.0267e-02, -9.4474e-02, -3.5725e-02, 9.9953e-03, -4.3195e-02, -7.9051e-02, -3.1881e-02, 9.2158e-03, -9.6167e-04, -2.7508e-02, 7.1478e-02, -5.4107e-02, 8.0026e-02, -1.8887e-02, 4.6941e-02, 6.5166e-02, 1.2000e-02, 3.9906e-02, -2.8206e-02, 3.7483e-02, 3.5408e-02, -2.5863e-02, 2.3528e-02, 7.1814e-03, 8.0863e-02, -1.3736e-02, -8.5978e-02, -4.1238e-02, -1.2545e-02, 5.5479e-02, 7.3487e-03, 8.9125e-02, -3.4814e-02, -4.5358e-02, 4.9893e-02, 3.5286e-02, 3.2084e-02, 5.0868e-02, 2.3549e-02, -9.2907e-02, -6.9315e-03, -1.3088e-02, 8.7066e-02, 1.1554e-02, 1.3771e-02, -1.7489e-02, -5.2921e-02, 9.2110e-03, 1.6766e-02, 4.8030e-02, 1.4481e-02, 2.9254e-03, 3.5795e-02, 1.0397e-01, -2.0675e-03, -2.9916e-02, -5.3299e-02, -2.1396e-02, -5.3189e-02, 3.2805e-02, -2.6538e-03, -2.6352e-02, -1.2823e-02, 6.1972e-02, 5.4822e-02, 4.5579e-02, -3.6638e-02, 8.1013e-03, -5.6014e-02, 1.5187e-02, -6.5561e-02]], device='cuda:0', dtype=torch.float64, grad_fn=)

    I wonder if I am running the code in the correct way. Is this index correct and if so, do you know what's happening?

    opened by wenhao-gao 3
  • About Reproducibility Issues

    About Reproducibility Issues

    Hi there,

    Thank you very much for sharing the source codes.

    For reproducibility, I modified the codes as follows,

    https://github.com/GFNOrg/gflownet/blob/831a6989d1abd5c05123ec84654fb08629d9bc38/mols/gflownet.py#L84

    ---> self.train_rng = np.random.RandomState(142857)

    as well as to add

    torch.manual_seed(142857)
    torch.cuda.manual_seed(142857)
    torch.cuda.manual_seed_all(142857)
    

    However, I encountered an issue. I ran it more than 3 times with the same random seed, but the results are totally different (although they are close). I didn't modify other parts, except for addressing package compatibility issues.

    0 [1152.62, 112.939, 23.232] 100 [460.257, 44.253, 17.728] 200 [68.114, 6.007, 8.045]

    0 [1151.024, 112.603, 24.993] 100 [471.219, 45.525, 15.964] 200 [66.349, 6.174, 4.607]

    0 [1263.066, 124.094, 22.128] 100 [467.747, 44.899, 18.76] 200 [61.992, 5.715, 4.841]

    I am wondering whether you encountered such an issue before.

    Best,

    Dong

    opened by dongqian0206 2
  • Reward signal for grid environment?

    Reward signal for grid environment?

    Hello, I'm a bit confused where this reward function comes from: https://github.com/GFNOrg/gflownet/blob/831a6989d1abd5c05123ec84654fb08629d9bc38/grid/toy_grid_dag.py#L97

    My understanding is that the reward should be as defined in the paper (https://i.samkg.dev/2233/firefox_xGnEaZVBlN.png) - are these two equivalent in some way?

    opened by SamKG 1
  • Potential bug with `FlowNetAgent.sample_many`

    Potential bug with `FlowNetAgent.sample_many`

    Hi there!

    Thanks for sharing the code and just wanted to say I've enjoyed your paper. I was reading your code and noticed that there might be a subtle bug in the grid-env dag script. I might also have read it wrong...

    https://github.com/bengioe/gflownet/blob/dddfbc522255faa5d6a76249633c94a54962cbcb/grid/toy_grid_dag.py#L316-L320

    On line 316, we zip two things: zip([e for d, e in zip(done, self.envs) if not d], acts)

    Here done is a vector of bools of length batch-size, self.envs is a list of GridEnv of length n-envs or buffer-size, and acts is a vector of ints of length (n-envs or buffer-size,).

    By default, all the lengths of the above objects should be 16.

    I was reading through the code, and noticed that if any of the elements in done are True, then on line 316 we filter them out with if not d. If env[0] was "done", then we would have a list of 15 envs, basically self.envs[1:]. Then when you zip up the actions and the shorter list envs, the actions will be aligned incorrectly... We will basically end up with self.envs[1:] being aligned to actions act[:-1]. As a result, step is now length 15, and on the next line, we again line up the incorrect actions of length 16 with our step list of length 16.

    Perhaps we need to filter act based on the done vector? E.g act = act[done] after line 316?

    Maybe I've got this wrong, so apologies for the noise if that's the case, but thought I'd leave a note in case what I'm suggesting is the case.

    All the best!

    opened by fedden 1
  • Clarification regarding the number of molecular building blocks. Why they are different from JT-VAE?

    Clarification regarding the number of molecular building blocks. Why they are different from JT-VAE?

    Hello,

    First, I really enjoyed reading the paper. Amazing work!

    I have a question regarding the number of building blocks used for generating small molecules. Appendix A.3 of the paper states that there are a total of 105 unique building blocks (after accounting for different attachment points) and that they were obtained by the process suggested by the JT-VAE paper. (Jin et al. (2020)). However, in the JT-VAE paper, the total vocabulary size is $|\chi|=780$ obtained from the same ZINC dataset. My understanding is they are both the same. If that is correct, why are the number of building blocks different here? What am I missing? If they are not the same, can you please explain the difference?

    Thank you so much for your help

    opened by Srilok 1
Releases(paper_version)
Owner
Emmanuel Bengio
Emmanuel Bengio
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023