Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

Overview

PL-Marker

Source code for Pack Together: Entity and Relation Extraction with Levitated Marker.

Quick links

Overview

In this work, we present a novel span representation approach, named Packed Levitated Markers, to consider the dependencies between the spans (pairs) by strategically packing the markers in the encoder. Our approach is evaluated on two typical span (pair) representation tasks:

  1. Named Entity Recognition (NER): Adopt a group packing strategy for enabling our model to process massive spans together to consider their dependencies with limited resources.

  2. Relation Extraction (RE): Adopt a subject-oriented packing strategy for packing each subject and all its objects into an instance to model the dependencies between the same-subject span pairs

Please find more details of this work in our paper.

Setup

Install Dependencies

The code is based on huggaface's transformers.

Install dependencies and apex:

pip3 install -r requirement.txt
pip3 install --editable transformers

Download and preprocess the datasets

Our experiments are based on three datasets: ACE04, ACE05, and SciERC. Please find the links and pre-processing below:

  • CoNLL03: We use the Enlish part of CoNLL03
  • OntoNotes: We use preprocess_ontonotes.py to preprocess the OntoNote 5.0.
  • Few-NERD: The dataseet can be downloaed in their website
  • ACE04/ACE05: We use the preprocessing code from DyGIE repo. Please follow the instructions to preprocess the ACE05 and ACE04 datasets.
  • SciERC: The preprocessed SciERC dataset can be downloaded in their project website.

Pre-trained Models

We release our pre-trained NER models and RE models for ACE05 and SciERC datasets on Google Drive/Tsinghua Cloud.

Note: the performance of the pre-trained models might be slightly different from the reported numbers in the paper, since we reported the average numbers based on multiple runs.

Training Script

Train NER Models:

bash scripts/run_train_ner_PLMarker.sh
bash scripts/run_train_ner_BIO.sh
bash scripts/run_train_ner_TokenCat.sh

Train RE Models:

bash run_train_re.sh

Quick Start

The following commands can be used to run our pre-trained models on SciERC.

Evaluate the NER model:

CUDA_VISIBLE_DEVICES=0  python3  run_acener.py  --model_type bertspanmarker  \
    --model_name_or_path  ../bert_models/scibert-uncased  --do_lower_case  \
    --data_dir scierc  \
    --learning_rate 2e-5  --num_train_epochs 50  --per_gpu_train_batch_size  8  --per_gpu_eval_batch_size 16  --gradient_accumulation_steps 1  \
    --max_seq_length 512  --save_steps 2000  --max_pair_length 256  --max_mention_ori_length 8    \
    --do_eval  --evaluate_during_training   --eval_all_checkpoints  \
    --fp16  --seed 42  --onedropout  --lminit  \
    --train_file train.json --dev_file dev.json --test_file test.json  \
    --output_dir sciner_models/sciner-scibert  --overwrite_output_dir  --output_results

Evaluate the RE model:

CUDA_VISIBLE_DEVICES=0  python3  run_re.py  --model_type bertsub  \
    --model_name_or_path  ../bert_models/scibert-uncased  --do_lower_case  \
    --data_dir scierc  \
    --learning_rate 2e-5  --num_train_epochs 10  --per_gpu_train_batch_size  8  --per_gpu_eval_batch_size 16  --gradient_accumulation_steps 1  \
    --max_seq_length 256  --max_pair_length 16  --save_steps 2500  \
    --do_eval  --evaluate_during_training   --eval_all_checkpoints  --eval_logsoftmax  \
    --fp16  --lminit   \
    --test_file sciner_models/sciner-scibert/ent_pred_test.json  \
    --use_ner_results \
    --output_dir scire_models/scire-scibert

Here, --use_ner_results denotes using the original entity type predicted by NER models.

TypeMarker

if we use the flag --use_typemarker for the RE models, the results will be:

Model Ent Rel Rel+
ACE05-UnTypeMarker (in paper) 89.7 68.8 66.3
ACE05-TypeMarker 89.7 67.5 65.2
SciERC-UnTypeMarker (in paper) 69.9 52.0 40.6
SciERC-TypeMarker 69.9 52.5 40.9

Since the Typemarker increase the performance of SciERC but decrease the performance of ACE05, we didn't use it in the paper.

Citation

If you use our code in your research, please cite our work:

@article{ye2021plmarker,
  author    = {Deming Ye and Yankai Lin and Maosong Sun},
  title     = {Pack Together: Entity and Relation Extraction with Levitated Marker},
  journal   = {arXiv Preprint},
  year={2021}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022