Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

Overview
logo

KML: A Machine Learning Framework for Operating Systems & Storage Systems

CircleCI codecov

Storage systems and their OS components are designed to accommodate a wide variety of applications and dynamic workloads. Storage components inside the OS contain various heuristic algorithms to provide high performance and adaptability for different workloads. These heuristics may be tunable via parameters, and some system calls allow users to optimize their system performance. These parameters are often predetermined based on experiments with limited applications and hardware. Thus, storage systems often run with these predetermined and possibly suboptimal values. Tuning these parameters manually is impractical: one needs an adaptive, intelligent system to handle dynamic and complex workloads. Machine learning (ML) techniques are capable of recognizing patterns, abstracting them, and making predictions on new data. ML can be a key component to optimize and adapt storage systems. We propose KML, an ML framework for operating systems & storage systems. We implemented a prototype and demonstrated its capabilities on the well-known problem of tuning optimal readahead values. Our results show that KML has a small memory footprint, introduces negligible overhead, and yet enhances throughput by as much as 2.3×.

For more information on the KML project, please see our papers

KML is under development by Ibrahim Umit Akgun of the File Systems and Storage Lab (FSL) at Stony Brook University under Professor Erez Zadok.

Table of Contents

Setup

Clone KML

# SSH
git clone --recurse-submodules [email protected]:sbu-fsl/kernel-ml.git

# HTTPS
git clone --recurse-submodules https://github.com/sbu-fsl/kernel-ml.git

Build Dependencies

KML depends on the following third-party repositories:

# Create and enter a directory for dependencies
mkdir dependencies
cd dependencies

# Clone repositories
git clone https://github.com/google/benchmark.git
git clone https://github.com/google/googletest.git

# Build google/benchmark
cd benchmark
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make
sudo make install

# Build google/googletest
cd ../googletest
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make
sudo make install
cd ../..

Install KML Linux Kernel Modifications

KML requires Linux kernel modifications to function. We recommend allocating at least 25 GiB of disk space before beginning the installation process.

  1. Navigate to the kernel-ml/kernel-ml-linux directory. This repository was recursively cloned during setup
    cd kernel-ml-linux
  2. Install the following packages
    git fakeroot build-essential ncurses-dev xz-utils libssl-dev bc flex libelf-dev bison
    
  3. Install the modified kernel as normal. No changes are required for make menuconfig
    cp /boot/config-$(uname -r) .config
    make menuconfig
    make -j$(nproc)
    sudo make modules_install -j$(nproc)
    sudo make install -j$(nproc)
  4. Restart your machine
    sudo reboot
    
  5. Confirm that you now have Linux version 4.19.51+ installed
    uname -a

Specify Kernel Header Location

Edit kernel-ml/cmake/FindKernelHeaders.cmake to specify the absolute path to the aforementioned kernel-ml/kernel-ml-linux directory. For example, if kernel-ml-linux lives in /home/kernel-ml/kernel-ml-linux:

...

# Find the headers
find_path(KERNELHEADERS_DIR
        include/linux/user.h
        PATHS /home/kernel-ml/kernel-ml-linux
)

...

Build KML

# Create a build directory for KML
mkdir build
cd build 
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-Werror" ..
make

Double Check

In order to check everything is OK, we can run tests and benchmarks.

cd build
ctest --verbose

Design

kernel-design

Example

Citing KML

To cite this repository:

@TECHREPORT{umit21kml-tr,
  AUTHOR =       "Ibrahim Umit Akgun and Ali Selman Aydin and Aadil Shaikh and Lukas Velikov and Andrew Burford and Michael McNeill and Michael Arkhangelskiy and Erez Zadok",
  TITLE =        "KML: Using Machine Learning to Improve Storage Systems",
  INSTITUTION =  "Computer Science Department, Stony Brook University",
  YEAR =         "2021",
  MONTH =        "Nov",
  NUMBER =       "FSL-21-02",
}
@INPROCEEDINGS{hotstorage21kml,
  TITLE =        "A Machine Learning Framework to Improve Storage System Performance",
  AUTHOR =       "Ibrahim 'Umit' Akgun and Ali Selman Aydin and Aadil Shaikh and Lukas Velikov and Erez Zadok",
  NOTE =         "To appear",
  BOOKTITLE =    "HotStorage '21: Proceedings of the 13th ACM Workshop on Hot Topics in Storage",
  MONTH =        "July",
  YEAR =         "2021",
  PUBLISHER =    "ACM",
  ADDRESS =      "Virtual",
  KEY =          "HOTSTORAGE 2021",
}
You might also like...
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

⚡ Fast • 🪶 Lightweight • 0️⃣ Dependency • 🔌 Pluggable • 😈 TLS interception • 🔒 DNS-over-HTTPS • 🔥 Poor Man's VPN • ⏪ Reverse & ⏩ Forward • 👮🏿 Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

Exploring Image Deblurring via Blur Kernel Space (CVPR'21)
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Releases(v0.0.1)
Owner
File systems and Storage Lab (FSL)
Researchers and students in the FSL group perform research in operating systems with focus on file systems, storage, security, and networking.
File systems and Storage Lab (FSL)
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022