UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Related tags

Deep LearningUMT
Overview

Unified Multi-modal Transformers

arXiv License

This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection by Ye Liu, Siyuan Li, Yang Wu, Chang Wen Chen, Ying Shan, and Xiaohu Qie, which has been accepted by CVPR 2022.

Installation

Please refer to the following environmental settings that we use. You may install these packages by yourself if you meet any problem during automatic installation.

  • CUDA 11.5.0
  • CUDNN 8.3.2.44
  • Python 3.10.0
  • PyTorch 1.11.0
  • NNCore 0.3.6

Install from source

  1. Clone the repository from GitHub.
git clone https://github.com/TencentARC/UMT.git
cd UMT
  1. Install dependencies.
pip install -r requirements.txt

Getting Started

Download and prepare the datasets

  1. Download and extract the datasets.
  1. Prepare the files in the following structure.
UMT
├── configs
├── datasets
├── models
├── tools
├── data
│   ├── qvhighlights
│   │   ├── *features
│   │   ├── highlight_{train,val,test}_release.jsonl
│   │   └── subs_train.jsonl
│   ├── charades
│   │   ├── *features
│   │   └── charades_sta_{train,test}.txt
│   ├── youtube
│   │   ├── *features
│   │   └── youtube_anno.json
│   └── tvsum
│       ├── *features
│       └── tvsum_anno.json
├── README.md
├── setup.cfg
└── ···

Train a model

Run the following command to train a model using a specified config.

# Single GPU
python tools/launch.py ${path-to-config}

# Multiple GPUs
torchrun --nproc_per_node=${num-gpus} tools/launch.py ${path-to-config}

Test a model and evaluate results

Run the following command to test a model and evaluate results.

python tools/launch.py ${path-to-config} --checkpoint ${path-to-checkpoint} --eval

Pre-train with ASR captions on QVHighlights

Run the following command to pre-train a model using ASR captions on QVHighlights.

torchrun --nproc_per_node=4 tools/launch.py configs/qvhighlights/umt_base_pretrain_100e_asr.py

Model Zoo

We provide multiple pre-trained models and training logs here. All the models are trained with a single NVIDIA Tesla V100-FHHL-16GB GPU and are evaluated using the default metrics of the datasets.

Dataset Model Type MR mAP HD mAP Download
[email protected] [email protected] [email protected] [email protected]
QVHighlights UMT-B 38.59 39.85 model | metrics
UMT-B w/ PT 39.26 40.10 model | metrics
Charades-STA UMT-B V + A 48.31 29.25 88.79 56.08 model | metrics
UMT-B V + O 49.35 26.16 89.41 54.95 model | metrics
YouTube
Highlights
UMT-S Dog 65.93 model | metrics
UMT-S Gymnastics 75.20 model | metrics
UMT-S Parkour 81.64 model | metrics
UMT-S Skating 71.81 model | metrics
UMT-S Skiing 72.27 model | metrics
UMT-S Surfing 82.71 model | metrics
TVSum UMT-S VT 87.54 model | metrics
UMT-S VU 81.51 model | metrics
UMT-S GA 88.22 model | metrics
UMT-S MS 78.81 model | metrics
UMT-S PK 81.42 model | metrics
UMT-S PR 86.96 model | metrics
UMT-S FM 75.96 model | metrics
UMT-S BK 86.89 model | metrics
UMT-S BT 84.42 model | metrics
UMT-S DS 79.63 model | metrics

Here, w/ PT means initializing the model using pre-trained weights on ASR captions. V, A, and O indicate video, audio, and optical flow, respectively.

Citation

If you find this project useful for your research, please kindly cite our paper.

@inproceedings{liu2022umt,
  title={UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection},
  author={Liu, Ye and Li, Siyuan and Wu, Yang and Chen, Chang Wen and Shan, Ying and Qie, Xiaohu},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}
Owner
Applied Research Center (ARC), Tencent PCG
Applied Research Center (ARC), Tencent PCG
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022