Benchmarks for semi-supervised domain generalization.

Overview

Semi-Supervised Domain Generalization

This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stochastic StyleMatch. The paper addresses a practical and yet under-studied setting for domain generalization: one needs to use limited labeled data along with abundant unlabeled data gathered from multiple distinct domains to learn a generalizable model. This setting greatly challenges existing domain generalization methods, which are not designed to deal with unlabeled data and are thus less scalable in practice. Our approach, StyleMatch, extends the pseudo-labeling-based FixMatch—a state-of-the-art semi-supervised learning framework—in two crucial ways: 1) a stochastic classifier is designed to reduce overfitting and 2) the two-view consistency learning paradigm in FixMatch is upgraded to a multi-view version with style augmentation as the third complementary view. Two benchmarks are constructed for evaluation. Please see the paper at https://arxiv.org/abs/2106.00592 for more details.

How to setup the environment

This code is built on top of Dassl.pytorch. Please follow the instructions provided in https://github.com/KaiyangZhou/Dassl.pytorch to install the dassl environment, as well as to prepare the datasets, PACS and OfficeHome. The five random labeled-unlabeled splits can be downloaded at the following links: pacs, officehome. The splits need to be extracted to the two datasets' folders. Assume you put the datasets under the directory $DATA, the structure should look like

$DATA/
    pacs/
        images/
        splits/
        splits_ssdg/
    office_home_dg/
        art/
        clipart/
        product/
        real_world/
        splits_ssdg/

The style augmentation is based on AdaIN and the implementation is based on this code https://github.com/naoto0804/pytorch-AdaIN. Please download the weights of the decoder and the VGG from https://github.com/naoto0804/pytorch-AdaIN and put them under a new folder ssdg-benchmark/weights.

How to run StyleMatch

The script is provided in ssdg-benchmark/scripts/StyleMatch/run_ssdg.sh. You need to update the DATA variable that points to the directory where you put the datasets. There are three input arguments: DATASET, NLAB (total number of labels), and CFG. See the tables below regarding how to set the values for these variables.

Dataset NLAB
ssdg_pacs 210 or 105
ssdg_officehome 1950 or 975
CFG Description
v1 FixMatch + stochastic classifier + T_style
v2 FixMatch + stochastic classifier + T_style-only (i.e. no T_strong)
v3 FixMatch + stochastic classifier
v4 FixMatch

v1 refers to StyleMatch, which is our final model. See the config files in configs/trainers/StyleMatch for the detailed settings.

Here we give an example. Say you want to run StyleMatch on PACS under the 10-labels-per-class setting (i.e. 210 labels in total), simply run the following commands in your terminal,

conda activate dassl
cd ssdg-benchmark/scripts/StyleMatch
bash run_ssdg.sh ssdg_pacs 210 v1

In this case, the code will run StyleMatch in four different setups (four target domains), each for five times (five random seeds). You can modify the code to run a single experiment instead of all at once if you have multiple GPUs.

At the end of training, you will have

output/
    ssdg_pacs/
        nlab_210/
            StyleMatch/
                resnet18/
                    v1/ # contains results on four target domains
                        art_painting/ # contains five folders: seed1-5
                        cartoon/
                        photo/
                        sketch/

To show the results, simply do

python parse_test_res.py output/ssdg_pacs/nlab_210/StyleMatch/resnet18/v1 --multi-exp

Citation

If you use this code in your research, please cite our paper

@article{zhou2021stylematch,
    title={Semi-Supervised Domain Generalization with Stochastic StyleMatch},
    author={Zhou, Kaiyang and Loy, Chen Change and Liu, Ziwei},
    journal={arXiv preprint arXiv:2106.00592},
    year={2021}
}
Owner
Kaiyang
Researcher in computer vision and machine learning :)
Kaiyang
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022