Group-Free 3D Object Detection via Transformers

Overview

Group-Free 3D Object Detection via Transformers

By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong.

This repo is the official implementation of "Group-Free 3D Object Detection via Transformers".

teaser

Updates

  • April 01, 2021: initial release.

Introduction

Recently, directly detecting 3D objects from 3D point clouds has received increasing attention. To extract object representation from an irregular point cloud, existing methods usually take a point grouping step to assign the points to an object candidate so that a PointNet-like network could be used to derive object features from the grouped points. However, the inaccurate point assignments caused by the hand-crafted grouping scheme decrease the performance of 3D object detection. In this paper, we present a simple yet effective method for directly detecting 3D objects from the 3D point cloud. Instead of grouping local points to each object candidate, our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers, where the contribution of each point is automatically learned in the network training. With an improved attention stacking scheme, our method fuses object features in different stages and generates more accurate object detection results. With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.

In this repository, we provide model implementation (with Pytorch) as well as data preparation, training and evaluation scripts on ScanNet and SUN RGB-D.

Citation

@article{liu2021,
  title={Group-Free 3D Object Detection via Transformers},
  author={Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong, Xin},
  journal={arXiv preprint arXiv:2104.00678},
  year={2021}
}

Main Results

ScanNet V2

Method backbone [email protected] [email protected] Model
HGNet GU-net 61.3 34.4 -
GSDN MinkNet 62.8 34.8 waiting for release
3D-MPA MinkNet 64.2 49.2 waiting for release
VoteNet PointNet++ 62.9 39.9 official repo
MLCVNet PointNet++ 64.5 41.4 official repo
H3DNet PointNet++ 64.4 43.4 official repo
H3DNet 4xPointNet++ 67.2 48.1 official repo
Ours(L6, O256) PointNet++ 67.3 (66.2*) 48.9 (48.4*) model
Ours(L12, O256) PointNet++ 67.2 (66.6*) 49.7 (49.3*) model
Ours(L12, O256) PointNet++w2× 68.8 (68.3*) 52.1 (51.1*) model
Ours(L12, O512) PointNet++w2× 69.1 (68.8*) 52.8 (52.3*) model

SUN RGB-D

Method backbone inputs [email protected] [email protected] Model
VoteNet PointNet++ point 59.1 35.8 official repo
MLCVNet PointNet++ point 59.8 - official repo
HGNet GU-net point 61.6 - -
H3DNet 4xPointNet++ point 60.1 39.0 official repo
imVoteNet PointNet++ point+RGB 63.4 - official repo
Ours(L6, O256) PointNet++ point 62.8 (62.6*) 42.3 (42.0*) model

Notes:

  • * means the result is averaged over 5-times evaluation since the algorithm randomness is large.

Install

Requirements

  • Ubuntu 16.04
  • Anaconda with python=3.6
  • pytorch>=1.3
  • torchvision with pillow<7
  • cuda=10.1
  • trimesh>=2.35.39,<2.35.40
  • 'networkx>=2.2,<2.3'
  • compile the CUDA layers for PointNet++, which we used in the backbone network: sh init.sh
  • others: pip install termcolor opencv-python tensorboard

Data preparation

For SUN RGB-D, follow the README under the sunrgbd folder.

For ScanNet, follow the README under the scannet folder.

Usage

ScanNet

For L6, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --num_decoder_layers 6 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 50000 --num_decoder_layers 6 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For L12, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --num_decoder_layers 12 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 50000 --num_decoder_layers 12 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For w2x, L12, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For w2x, L12, O256 evaluation:

python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For w2x, L12, O512 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For w2x, L12, O512 evaluation:

python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

SUN RGB-D

For L6, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --max_epoch 600 --lr_decay_epochs 420 480 540 --num_point 20000 --num_decoder_layers 6 \
    --size_delta 0.0625 --heading_delta 0.04 --center_delta 0.1111111111111 \
    --learning_rate 0.004 --decoder_learning_rate 0.0002 --weight_decay 0.00000001 --query_points_generator_loss_coef 0.2 --obj_loss_coef 0.4 \
    --dataset sunrgbd --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 20000 --num_decoder_layers 6 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset sunrgbd --data_root <data directory> [--dump_dir <dump directory>]

Acknowledgements

We thank a lot for the flexible codebase of votenet.

License

The code is released under MIT License (see LICENSE file for details).

Owner
Ze Liu
USTC & MSRA Joint-PhD candidate.
Ze Liu
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022