Group-Free 3D Object Detection via Transformers

Overview

Group-Free 3D Object Detection via Transformers

By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong.

This repo is the official implementation of "Group-Free 3D Object Detection via Transformers".

teaser

Updates

  • April 01, 2021: initial release.

Introduction

Recently, directly detecting 3D objects from 3D point clouds has received increasing attention. To extract object representation from an irregular point cloud, existing methods usually take a point grouping step to assign the points to an object candidate so that a PointNet-like network could be used to derive object features from the grouped points. However, the inaccurate point assignments caused by the hand-crafted grouping scheme decrease the performance of 3D object detection. In this paper, we present a simple yet effective method for directly detecting 3D objects from the 3D point cloud. Instead of grouping local points to each object candidate, our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers, where the contribution of each point is automatically learned in the network training. With an improved attention stacking scheme, our method fuses object features in different stages and generates more accurate object detection results. With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.

In this repository, we provide model implementation (with Pytorch) as well as data preparation, training and evaluation scripts on ScanNet and SUN RGB-D.

Citation

@article{liu2021,
  title={Group-Free 3D Object Detection via Transformers},
  author={Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong, Xin},
  journal={arXiv preprint arXiv:2104.00678},
  year={2021}
}

Main Results

ScanNet V2

Method backbone [email protected] [email protected] Model
HGNet GU-net 61.3 34.4 -
GSDN MinkNet 62.8 34.8 waiting for release
3D-MPA MinkNet 64.2 49.2 waiting for release
VoteNet PointNet++ 62.9 39.9 official repo
MLCVNet PointNet++ 64.5 41.4 official repo
H3DNet PointNet++ 64.4 43.4 official repo
H3DNet 4xPointNet++ 67.2 48.1 official repo
Ours(L6, O256) PointNet++ 67.3 (66.2*) 48.9 (48.4*) model
Ours(L12, O256) PointNet++ 67.2 (66.6*) 49.7 (49.3*) model
Ours(L12, O256) PointNet++w2× 68.8 (68.3*) 52.1 (51.1*) model
Ours(L12, O512) PointNet++w2× 69.1 (68.8*) 52.8 (52.3*) model

SUN RGB-D

Method backbone inputs [email protected] [email protected] Model
VoteNet PointNet++ point 59.1 35.8 official repo
MLCVNet PointNet++ point 59.8 - official repo
HGNet GU-net point 61.6 - -
H3DNet 4xPointNet++ point 60.1 39.0 official repo
imVoteNet PointNet++ point+RGB 63.4 - official repo
Ours(L6, O256) PointNet++ point 62.8 (62.6*) 42.3 (42.0*) model

Notes:

  • * means the result is averaged over 5-times evaluation since the algorithm randomness is large.

Install

Requirements

  • Ubuntu 16.04
  • Anaconda with python=3.6
  • pytorch>=1.3
  • torchvision with pillow<7
  • cuda=10.1
  • trimesh>=2.35.39,<2.35.40
  • 'networkx>=2.2,<2.3'
  • compile the CUDA layers for PointNet++, which we used in the backbone network: sh init.sh
  • others: pip install termcolor opencv-python tensorboard

Data preparation

For SUN RGB-D, follow the README under the sunrgbd folder.

For ScanNet, follow the README under the scannet folder.

Usage

ScanNet

For L6, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --num_decoder_layers 6 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 50000 --num_decoder_layers 6 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For L12, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --num_decoder_layers 12 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 50000 --num_decoder_layers 12 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For w2x, L12, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For w2x, L12, O256 evaluation:

python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For w2x, L12, O512 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For w2x, L12, O512 evaluation:

python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

SUN RGB-D

For L6, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --max_epoch 600 --lr_decay_epochs 420 480 540 --num_point 20000 --num_decoder_layers 6 \
    --size_delta 0.0625 --heading_delta 0.04 --center_delta 0.1111111111111 \
    --learning_rate 0.004 --decoder_learning_rate 0.0002 --weight_decay 0.00000001 --query_points_generator_loss_coef 0.2 --obj_loss_coef 0.4 \
    --dataset sunrgbd --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 20000 --num_decoder_layers 6 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset sunrgbd --data_root <data directory> [--dump_dir <dump directory>]

Acknowledgements

We thank a lot for the flexible codebase of votenet.

License

The code is released under MIT License (see LICENSE file for details).

Owner
Ze Liu
USTC & MSRA Joint-PhD candidate.
Ze Liu
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021