Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Overview

Hurdles to Progress in Long-form Question Answering

This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hurdles to Progress in Long-form Question Answering". This repository supports inference from the pretrained retriever / generator & includes evaluation scripts.

Specifically, this codebase contains the model checkpoints, inference scripts for the retriever / generator model, generated outputs from model using c-REALM retrievals and random retrievals, scripts to compute ROUGE-L / R-Prec scores using the generations, scripts for question paraphrase classification, scripts for computing ROUGE-L bounds. You can also find the original Routing Transformer model's codebase here.

Setup

pip install transformers
pip install tensor2tensor

For GPU support, you might need to change the version of your TensorFlow depending on the CUDA / CuDNN installation (details). GPU support is strongly recommended for faster inference.

Model Checkpoints & Generations

Routing Transformer finetuned on ELI5: link
c-REALM TF Hub model + encoded retrieval corpora: link
c-REALM tokenized KILT Wikipedia data: link
c-REALM tokenized ELI5 training data: link
Pre-computed generations & QQP classifier: link

The original Routing Transformer model (pretrained on PG-19) and a local attention version of it can be found in the main repository (link).

Generating from the Routing Transformer

(We have provided the pre-computed retrievals from c-REALM on ELI5, so no need to run the c-REALM retriever)

  1. Download the "Routing Transformer finetuned on ELI5" model listed above and place it inside models.
wget https://storage.googleapis.com/rt-checkpoint/eli5_checkpoint.zip
unzip eli5_checkpoint.zip -d models
rm eli5_checkpoint.zip
  1. Download the generations folder from the Google Drive link listed as "Pre-computed generations & QQP classifier" above.

  2. Run eval_generate_eli5.py to generate from the model. We have provided c-REALM retrieval outputs in the script for the ELI5 validation / test split. For custom inputs, you will need to load the retriever and wikipedia corpus (see next section). Generation is on the slower side (~4 minutes per ELI5 QA pair on a 1080ti GPU), we hope to switch to the faster decoding mode in the Routing Transformer model in the near future.

Retrievals from c-REALM

(This script only tests the retriever, it doesn't depend on the Routing Transformer generator model)

  1. Download the "c-REALM TF Hub model + encoded retrieval corpora" model listed above. Place it inside the models folder.
wget https://storage.googleapis.com/rt-checkpoint/retriever.zip
unzip retriever.zip -d models
rm retriever.zip
  1. Download "c-REALM tokenized KILT Wikipedia data" if you are interested in retrieving from the KILT Wikipedia corpus and/or "c-REALM tokenized ELI5 training data" if you are interested in retrieving question paraphrases from the ELI5 training set. Place them inside the models folder.
wget https://storage.googleapis.com/rt-checkpoint/eli5_retrieval_train.zip
unzip eli5_retrieval_train.zip -d models
rm eli5_retrieval_train.zip
  1. Run eval_retriever_eli5.py to retrieve using c-REALM. Modify the --retrieval_corpus flag to choose the retrieval corpus.

Evaluation of Outputs

Setup

  1. Download the generations folder from the Google Drive link into this root folder.

  2. Clone the KILT repository in this folder and run the installation in a virtual environment.

git clone https://github.com/facebookresearch/KILT
cd KILT
virtualenv -p python3.7 kilt-venv
pip install -r requirements.txt
pip install --editable .
  1. If you are interested in using the Quora Question Paraphrase classifier (used in Section 3.2 of the paper), download the roberta-large-finetuned-qqp folder from "Pre-computed generations & QQP classifier" listed above. This model was built by Tu Vu.

  2. Download the ELI5 train, validation and test splits.

cd KILT
wget http://dl.fbaipublicfiles.com/KILT/eli5-train-kilt.jsonl -O train.jsonl
wget http://dl.fbaipublicfiles.com/KILT/eli5-dev-kilt.jsonl -O valid.jsonl
wget http://dl.fbaipublicfiles.com/KILT/eli5-test_without_answers-kilt.jsonl -O test.jsonl

Running evaluations

Enter the KILT folder and run the following command for evaluating p=0.6 with c-REALM retrievals on the validation set:

python kilt/eval_downstream.py ../generations/final_guess_eli5_0.6_predicted_retrieval.jsonl ../generations/final_gold_eli5_0.6_predicted_retrieval.jsonl

which should give you the output (partly reported in Table 6 of the paper),

{   'downstream': {   'accuracy': 0.0,
                      'em': 0.0,
                      'f1': 0.25566078582652935,
                      'rougel': 0.24417152125142375},
    'kilt': {   'KILT-accuracy': 0.0,
                'KILT-em': 0.0,
                'KILT-f1': 0.03414819887348917,
                'KILT-rougel': 0.03205580975169385},
    'retrieval': {'Rprec': 0.13258897418004187, '[email protected]': 0.2122586648057688}}

To evaluate other configurations, modify the paths in the command above. You can replace 0.6 with 0.9 for higher entropy generations, and replace predicted with random for randomly selected retrieval paragraphs (Hurdle #1 or Section 3.1 in the paper). Note that you should make this change for both the guess and gold files, to ensure correct alignment. We have only provided generations for the validation set since the test set answers / retrievals for ELI5 are hidden behind the KILT leaderboard.

Question paraphrase classification using QQP Classifier

In Section 3.2 of our paper, we used a Quora Question Paraphrase classifier to find question paraphrases amoung similar questions retrieved by c-REALM. To run this, make sure you have downloaded the QQP checkpoint (step 3 in Setup) and run,

python run_qqp.py --input_file generations/final_guess_eli5_0.6_similar_questions.jsonl

You should get a score of 43.6%. Note that this is a lower-bound --- qualitatively we found this classifier missed several paraphrase pairs with low lexical overlap, or cases where the retrieved training set question will have a super-set of the information needed to answer the validation set question.

Lower and Upper Bounds on ROUGE-L

Run the following to evaluate bounds on ROUGE-L. Make sure you have completed steps 1, 4 in the setup above. Scripts to evaluate other bounds involving training set retrieval coming soon!

cp generate_final_guess_bounds.py KILT/
cd KILT

# Copy input lowerbound, should get 20.0 ROUGE-L
python generate_final_guess_bounds.py --bound_type copy_input

# Random training set answer, should get 15.8-16.2 ROUGE-L depending on randomness
python generate_final_guess_bounds.py --bound_type random_train_ans

# "Performance" can be further boosted by randomly selecting from only longest answers
# for each training set question, up to ~16.7 ROUGE-L. This result is not reported in
# paper, but can be run using:
python generate_final_guess_bounds.py --bound_type random_train_ans_longest

# Longest gold answer upperbound, should get 21.2 ROUGE-L
python generate_final_guess_bounds.py --bound_type longest_gold

# Best gold answer upperbound, should get 26.2 ROUGE-L (takes a while to run, 45 min on single core)
python generate_final_guess_bounds.py --bound_type best_gold

Citation

If you found our paper or this repository useful, please cite:

@inproceedings{lfqa21,
author={Kalpesh Krishna and Aurko Roy and Mohit Iyyer},
Booktitle = {North American Association for Computational Linguistics},
Year = "2021",
Title={Hurdles to Progress in Long-form Question Answering},
}
Owner
Kalpesh Krishna
PhD student in Computer Science at UMass Amherst. Formerly IIT Bombay, @google-research, @mozilla, TTIC, @wncc.
Kalpesh Krishna
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023