Benchmark tools for Compressive LiDAR-to-map registration

Overview

Benchmark tools for Compressive LiDAR-to-map registration

This repo contains the released version of code and datasets used for our IROS 2021 paper: "Map Compressibility Assessment for LiDAR Registration [link]. If you find the code useful for your work, please cite:

@inproceedings{Chang21iros,
   author = {M.-F. Chang and W. Dong and J.G. Mangelson and M. Kaess and S. Lucey},
   title = {Map Compressibility Assessment for {LiDAR} Registration},
   booktitle = {Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots andSystems, IROS},
   address = {Prague, Czech Republic},
   month = sep,
   year = {2021}
}

Environment Setup

The released codebase supports following methods:

  1. Point-to-point ICP (from open3d)
  2. Point-to-plane ICP (from open3d)
  3. FPFH (with RANSAC from open3d or Teaser++)
  4. FCGF (with RANSAC from open3d or Teaser++)
  5. D3Feat (with RANSAC from open3d or Teaser++)

To run Teaser++, please also install from https://github.com/MIT-SPARK/TEASER-plusplus (python bindings required). One can build install the environment with the following conda command:

conda create --name=benchmark  python=3.6  numpy open3d=0.12  tqdm pytorch cpuonly -c pytorch -c open3d-admin -c conda-forge 
conda activate benchmark
pip install pillow==6.0 #for visualization

Datasets

The preprocessed data can be downloaded from [link]. The following data were provided:

  1. Preprocessed KITTI scan/local map pairs
  2. Preprocessed Argoverse Tracking scan/local map pairs
  3. FCGF and D3Feat features
  4. The ground truth poses

We haved preprocessed the results from FCGF and D3Feat into pickle files. The dataset is organized as source-target pairs. The source is the input LiDAR scan and the target is the cropped local map with initial LiDAR pose.

By default, we put the data in ./data folder. Please download the corresponding files from [link] and put/symlink it in ./data. The file structure is as follows:

./data
   ├─ data_Argoverse_Tracking
   │    ├─ test_dict_maps.pickle
   │    ├─ test_list_T_gt.pickle
   │    └─ test_samples.pickle
   │ 
   ├─ data_KITTI
   │    ├─ test_dict_maps.pickle
   │    ├─ test_list_T_gt.pickle
   │    └─ test_samples.pickle
   │ 
   ├─ deep
   │    ├─ d3feat.results.pkl.Argoverse_Tracking
   │    ├─ d3feat.results.pkl.KITTI
   │    ├─ fcgf.results.pkl.Argoverse_Tracking
   │    └─ fcgf.results.pkl.KITTI
----

Usage

To run the code, simply use the following command and specify the config file name.:

python3 run_eval.py --path_cfg=configs.config

For trying out existing methods, first edit config.py to config the method list, the dataset name, and the local dataset path.

For trying out new methods, please add the registration function to tester.py and add the method configuration to method.py and the parameters to method.json.

To visualize the resulting recall curves, please run

python3 make_recall_figure_threshold.py --path_cfg=configs.config

It will generate the recall plot and error density plot in ./output_eval_{dataset_name}. Here is an expected outout:

Acknowledgement

This work was supported by the CMU Argo AI Center for Autonomous Vehicle Research. We also thank our labmates for the valuable suggestions to improve this paper.

References

  1. Teaser++
  2. Open3d
  3. KITTI Odometry Dataset
  4. Argoverse 3D Tracking 1.1
  5. FCGF
  6. D3Feat
Owner
Allie
PhD student in Robotics Institute of Carnegie Mellon University
Allie
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022