Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

Overview

STAR-pytorch

Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

CVF (pdf)

STAR-DCE

The pytorch implementation of low light enhancement with STAR on Adobe-MIT FiveK dataset. You can find it in STAR-DCE directory. Here we adopt the pipleline of Zero-DCE ( paper | code ), just replacing the CNN backbone with STAR. In Zero-DCE, for each image the network will regress a group of curves, which will then applied on the source image iteratively. You can find more details in the original repo Zero-DCE.

Requirements

  • numpy
  • einops
  • torch
  • torchvision
  • opencv

Datesets

We provide download links for Adobe-MIT FiveK datasets we used ( train | test ). Please note that we adopt the test set splited by DeepUPE for fair comparison.

Training DCE models

To train a original STAR-DCE model,

cd STAR-DCE
python train_dce.py 
  --lowlight_images_path "dir-to-your-training-set" \
  --parallel True \
  --snapshots_folder snapshots/STAR-ori \
  --lr 0.001 \
  --num_epochs 100 \
  --lr_type cos \
  --train_batch_size 32 \
  --model STAR-DCE-Ori \
  --snapshot_iter 10 \
  --num_workers 32 \

To train the baseline CNN-based DCE-Net (w\ or w\o Pooling),

cd STAR-DCE
python train_dce.py 
  --lowlight_images_path "dir-to-your-training-set" \
  --parallel True \
  --snapshots_folder snapshots/DCE \
  --lr 0.001 \
  --num_epochs 100 \
  --lr_type cos \
  --train_batch_size 32 \
  --model DCE-Net \
  --snapshot_iter 10 \
  --num_workers 32 \

or

cd STAR-DCE
python train_dce.py 
  --lowlight_images_path "dir-to-your-training-set" \
  --parallel True \
  --snapshots_folder snapshots/DCE-Pool \
  --lr 0.001 \
  --num_epochs 100 \
  --lr_type cos \
  --train_batch_size 32 \
  --model DCE-Net-Pool \
  --snapshot_iter 10 \
  --num_workers 32 \

Evaluation of trained models

To evaluated the STAR-DCE model you trained,

cd STAR-DCE
  python test_dce.py \
  --lowlight_images_path  "dir-to-your-test-set" \
  --parallel True \
  --snapshots_folder snapshots_test/STAR-DCE \
  --val_batch_size 1 \
  --pretrain_dir snapshots/STAR-ori/Epoch_best.pth \
  --model STAR-DCE-Ori \

To evaluated the DCE-Net model you trained,

cd STAR-DCE
  python test_dce.py \
  --lowlight_images_path  "dir-to-your-test-set" \
  --parallel True \
  --snapshots_folder snapshots_test/DCE \
  --val_batch_size 1 \
  --pretrain_dir snapshots/DCE/Epoch_best.pth \
  --model DCE-Net \

Citation

If this code helps your research, please cite our paper :)

@inproceedings{zhang2021star,
  title={STAR: A Structure-Aware Lightweight Transformer for Real-Time Image Enhancement},
  author={Zhang, Zhaoyang and Jiang, Yitong and Jiang, Jun and Wang, Xiaogang and Luo, Ping and Gu, Jinwei},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4106--4115},
  year={2021}
}
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022