Exploit ILP to learn symmetry breaking constraints of ASP programs.

Overview

ILP Symmetry Breaking

Overview

This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs.

Given an ASP file, we use the system SBASS (symmetry-breaking answer set solving) to infer its graph representation and then detect the symmetries as a graph automorphism problem (performed by the system SAUCY). SBASS returns a set of (irredundant) graph symmetry generators, which are used in our framework to compute the positive and negative examples for the ILP system ILASP.

Note: the files of Active Background Knowledge (active_BK/active_BK_sat) contain the constraints learned for the experiments. To test the framework, remove the constraints and follow the files' instructions to obtain the same result.

Project Structure

.
├── \Experiments              # Directory with experiments results 
│   ├── experiments.csv         # CSV file with results
│   └── experiments             # Script to compare the running-time performance     
│
├── \Instances              # Directory with problem instances
│   ├── \House_Configuration     # House-Configuration Problem     
│   ├── \Pigeon_Owner            # Pigeon-Hole Problem with colors and owners extension   
│   ├── \Pigeon_Color            # Pigeon-Hole Problem with colors extension
│   └── \Pigeon_Hole             # Pigeon-Hole Problem  
│
├── \src                    # Sources  
│   ├── \ILASP4                  # ILASP4 
│   ├── \SBASS                   # SBASS 
│   ├── file_names.py            # Python module with file names
│   ├── parser.py                # Main python file: create the positive and negative examples from SBASS output
│   ├── remove.py                # Auxiliary python file to remove duplicate in smodels file
│   └── permutations.lp          # ASP file which computes the (partial) non symmetric 
│                                  permutations of atoms
│
├── .gitignore 
├── .gitattributes
├── ILP_SBC                 # Script that runs SBASS and lift the SBC found using ILASP
└── README.md

Prerequisites

Usage

1) Create default positive examples

Create the default positive examples for Pigeon_Hole problem: each instance in the directory Gen generate a positive example.

$ .\ILP_SBC -g .\Instances\Pigeon_Hole

2) Create positive and negative examples

Default mode: each non-symmetric answer set defines a positive example

 $ .\ILP_SBC -d .\Instances\Pigeon_Hole

Satisfiable mode: define a single positive example with empty inclusions and exclusions

 $ .\ILP_SBC -s .\Instances\Pigeon_Hole

3) Run ILASP to extend the active background knowledge

 $ .\ILP_SBC -i .\Instances\Pigeon_Hole

Citations

C. Drescher, O. Tifrea, and T. Walsh, “Symmetry-breaking answer set solving” (SBASS)

@article{drescherSymmetrybreakingAnswerSet2011,
	title = {Symmetry-breaking answer set solving},
	volume = {24},
	doi = {10.3233/AIC-2011-0495},
	number = {2},
	journal = {AI Commun.},
	author = {Drescher, Christian and Tifrea, Oana and Walsh, Toby},
	year = {2011},
	pages = {177--194}
}

M. Law, A. Russo, and K. Broda, “The {ILASP} System for Inductive Learning of Answer Set Programs” (ILASP)

@article{larubr20b,
     title = {The {ILASP} System for Inductive Learning of Answer Set Programs},
     author = {M. Law and A. Russo  and K. Broda},
     journal = {The Association for Logic Programming Newsletter},
     year = {2020}
}
@misc{ilasp,
     author = {M. Law and A. Russo  and K. Broda},
     title = {Ilasp Releases},
     howpublished = {\url{www.ilasp.com}},
     note = {Accessed: 2020-10-01},
     year={2020}
}
Owner
Research Group Production Systems
Research Group Production Systems
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022