Manifold Alignment for Semantically Aligned Style Transfer

Related tags

Deep LearningMAST
Overview

Manifold Alignment for Semantically Aligned Style Transfer

[Paper]

res1 GUI Demo

Getting Started

MAST has been tested on CentOS 7.6 with python >= 3.6. It supports both GPU and CPU inference. If you don't have a suitable device, try running our Colab demo.

Clone the repo:

git clone https://github.com/NJUHuoJing/MAST.git

prepare the checkpoints:

cd MAST
chmod 777 scripts/prepare_data.sh
scripts/prepare_data.sh

Install the requirements:

conda create -n mast-env python=3.6
conda activate mast-env
pip install -r requirements.txt

# If you want to use post smoothing as the same as PhotoWCT, then install the requirements below;
# You can also just skip it to use fast post smoothing, remember to change cfg.TEST.PHOTOREALISTIC.FAST_SMOOTHING=true
pip install -U setuptools
pip install cupy
pip install pynvrtc

Running the Demo

Artistic style transfer

First set MAST_CORE.ORTHOGONAL_CONSTRAINT=false in configs/config.yaml. Then use the script test_artistic.py to generate the artistic stylized image by following the command below:

# not use seg
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default

# use --content_seg_path and --style_seg_path to user edited style transfer
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default --content_seg_path data/default/content_segmentation/4.png --style_seg_path data/default/style_segmentation/4.png --seg_type labelme --resize 512

Photo-realistic style transfer

First set MAST_CORE.ORTHOGONAL_CONSTRAINT=true in configs/config.yaml. Then use the script test_photorealistic.py to generate the photo-realistic stylized image by following the command below:

# not use seg
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --resize 512

# or use --content_seg_path and --style_seg_path to user edited style transfer
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --content_seg_path data/photo_data/content_segmentation/in1.png --style_seg_path data/photo_data/style_segmentation/tar1.png --seg_type dpst --resize 512

GUI For Artistic style transfer and User Editing

We provide a gui for user-controllable artistic image stylization. Just use the command below to run test_gui.py

python test_gui.py --cfg_path configs/config.yaml

Features

  1. You can use different colors to control the style transfer in different semantic areas.
  2. The button Expand and Expand num respectively control whether to expand the selected semantic area and the degree of expansion.

See the gif demo for more details.

Google Colab

If you do not have a suitable environment to run this project then you could give Google Colab a try. It allows you to run the project in the cloud, free of charge. You may try our Colab demo using the notebook we have prepared: Colab Demo

Citation

@inproceedings{huo2021manifold,
    author = {Jing Huo and Shiyin Jin and Wenbin Li and Jing Wu and Yu-Kun Lai and Yinghuan Shi and Yang Gao},
    title = {Manifold Alignment for Semantically Aligned Style Transfer},
    booktitle = {IEEE International Conference on Computer Vision},
    pages     = {14861-14869},
    year = {2021}
}

References

  • The post smoothing module is borrowed from PhotoWCT
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022