Simultaneous Detection and Segmentation

Overview

##Simultaneous Detection and Segmentation

This is code for the ECCV Paper:
Simultaneous Detection and Segmentation
Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik
To appear in ECCV, 2014.

###Installation

  • Installing caffe: The code comes bundled with a version of caffe that we have modified slightly for SDS. (These modifications might be merged into the public caffe version sometime in the future). To install caffe, follow the instructions on the caffe webpage. (You'll have to install some pre-requisites). After installing all prerequisites, cd into extern/caffe and do make caffe.
    After you have made caffe, you will also need to do make matcaffe.

  • Downloading other external dependencies (MCG and liblinear): The extern folder has a script that downloads MCG and liblinear and compiles liblinear. After running the script, cd into extern/MCG-PreTrained and change the path in root_dir.m to the path to the MCG-PreTrained directory.

  • Starting MATLAB: Start MATLAB and call startup_sds from the main SDS directory. This will compile all mexes in MCG and liblinear, and add all paths.

    A few possible issues related to Caffe:

    • You may need to add the path to CUDA libraries (usually in /usr/local/cuda/lib64) to LD_LIBRARY_PATH before starting MATLAB.
    • When running the code, if you get an error saying: /usr/lib/x86_64-linux-gnu/libharfbuzz.so.0: undefined symbol: FT_Face_GetCharVariantIndex, try adding /usr/lib/x86_64-linux-gnu/libfreetype.so.6(or the equivalent library that your system may have) to the LD_PRELOAD environment variable before starting MATLAB.

###Using Pre-computed results To get started you can look at precomputed results. Download the precomputed results from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_precomputed_results.tar.gz and untar it. The precomputed results contain results on VOC2012 val images (SDS, detection and segmentation). You can visualize the precomputed results using the function visualize_precomputed_results.m: visualize_precomputed_results('/path/to/precomputed/results', '/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages', categ_id);
Here categ_id is the number of the category, for example 15 for person.

Note that you do not need to install Caffe or any of the external dependencies above if you want to simply visualize or use precomputed results.

###Testing Pre-trained models

Download the pretrained models from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_pretrained_models.tar.gz and untar them in the main SDS directory.

demo_sds.m is a simple demo that uses the precomputed models to show the outputs we get on a single image. It takes no arguments. It runs the trained models on an example image and displays the detections for the person category. This function is a wrapper around the main function, which is called imagelist_to_sds.m.

###Benchmarking and evaluation

You can also run the benchmark demo, demo_sds_benchmark, which tests our pipeline on a small 100 image subset of VOC2012 val and then evaluates for the person category. You can call it as follows:
demo_sds_benchmark('/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages/', '/path/to/cachedir', '/path/to/SBD');
Here the cachedir is a directory where intermediate results will be stored. The function also requires the SBD (Semantic Boundaries Dataset), which you can get here. The function does the evaluation for both before refinement and after refinement, and reports an APr of 59.9 in the first case and 66.8 in the second case.

The main function for running the benchmark is evaluation/run_benchmark.m. demo_sds_benchmark should point you to how to run the benchmark.

###Evaluating on detection and segmentation

  • Detection: Look at imagelist_to_det.m to see how to produce a bounding box detection output. In summary, after computing scores on all regions, we use misc/box_nms.m to non-max suppress the boxes using box overlap. misc/write_test_boxes then writes the boxes out to a file that you can submit to PASCAL.

  • Semantic segmentation: Look at imagelist_to_seg.m to see how we produce a semantic segmentation output. In summary, after we compute scores on all regions, we do misc/region_nms.m to non-max suppress boxes, and use misc/get_top_regions.m to get the top regions per category. For our experiments, we picked the top 5K regions for seg val and seg test. Then we call paste_segments: [local_ids, labels, scores2] = paste_segments(topchosen, scores, region_meta_info, 2, 10, -1); topchosen is the first output of get_top_regions.m. These parameters above were tuned on seg val 2011. This function will pick out the segments to paste. To do the actual pasting, use create_pasted_segmentations (if you don't want any refinement) or create_pasted_segmentations_refined (if you want refinement). Refinement is a bit slower but works ~1 point better.

###SDS results format If you want to do more with our results, you may want to understand how we represent our results.

  • Representing region candidates: Because we work with close to 2000 region candidates, saving them as full image-sized masks uses up a lot of space and requires a lot of memory to process. Instead, we save these region candidates using a superpixel representation: we save a superpixel map, containing the superpixel id for each pixel in the image, and we represent each region as a binary vector indicating which superpixels are present in the region. To allow this superpixel representation to be accessible to Caffe, we
  • save the superpixel map as a text file, the first two numbers in which represent the size of the image and the rest of the file contains the superpixel ids of the pixels in MATLAB's column-major order (i.e, we first store the superpixel ids of the first column, then the second column and so on).
  • stack the representation of each region as a matrix (each column representing a region) and save it as a png image.

read_sprep can read this representation into matlab.

  • Representing detections: After the regions have been scored and non-max suppressed, we store the chosen regions as a cell array, one cell per category. Each cell is itself a cell array, with as many cells as there are images, and each cell containing the region id of the chosen regions. The scores are stored in a separate cell array.

  • Representing refined detections: After refinement, the refined regions are stored as binary matrices in mat files, one for each image. The refined regions for different categories are stored in different directories

###Retraining region classifiers

To retrain region classifiers, you first need to save features for all regions including ground truth. You can look at the function setup_svm_training.m. This function will save features and return a region_meta_info struct, which has in it the overlaps of all the regions with all the ground truth. The function expects a list of images, a number of paths to save stuff in, and a path to the ground truth (SBD).

Once the features are saved you can use the region_classification/train_svms.m function to train the detectors. You can also train refinement models for each category using refinement/train_refiner.m

###Retraining the network To retrain the network you will have to use caffe. You need two things: a prototxt specifying the architecture, and a window file specifying the data.

  • Window file: Writing the window file requires you to make a choice between using box overlap to define ground truth, or using region overlap to define ground truth. In the former case, use feature_extractor/make_window_file_box.m and in the latter use feature_extractor/make_window_file_box.m. Both functions require as input the image list, region_meta_info (output of preprocessing/preprocess_mcg_candidates; check setup_svm_training to see how to call it), sptextdir, regspimgdir (specifying the superpixels and regions) and the filename in which the output should go.

  • Prototxt: There are 3 prototxts that figure during training. One specifies the solver, and points to the other two: one for training and the other for testing. Training a single pathway network for boxes can be done with the window_train and window_val, a single pathway network on regions can be done using masked_window_train and masked_window_val, and a two pathway network (net C) can be trained using piwindow_train and piwindow_val. (Here "pi" refers to the architecture of the network, which looks like the capital greek pi.) The train and val prototxts also specify which window file to use. The solver prototxt specifies the path to the train and val prototxts. It also specifies where the snapshots are saved. Make sure that path can be saved to.

  • Initialization: A final requirement for finetuning is to have an initial network, and also the imagenet mean. The latter you can get by running extern/caffe/data/ilsvrc12/get_ilsvrc_aux.sh The initial network is the B network for net C. For everything else, it is the caffe reference imagenet model, which you can get by running extern/caffe/examples/imagenet/get_caffe_reference_imagenet_model.sh

  • Finetuning: cd into caffe and use the following command to train the network (replace caffe_reference_imagenet_model by the appropriate initialization):
    GLOG_logtostderr=1 ./build/tools/finetune_net.bin ../prototxts/pascal_finetune_solver.prototxt ./examples/imagenet/caffe_reference_imagenet_model 2>&1 | tee logdir/log.txt
    Finally, extracting features requires a network with the two-pathway architecture. If you trained the box and region pathway separately, you can stitch them together using feature_extractor/combine_box_region_nets.m

Owner
Bharath Hariharan
Bharath Hariharan
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022