Implement A3C for Mujoco gym envs

Overview

pytorch-a3c-mujoco

Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. All comments are welcomed and feel free to contact me!

This code aims to solve some control problems, espicially in Mujoco, and is highly based on pytorch-a3c. What's difference between this repo and pytorch-a3c:

  • compatible to Mujoco envionments
  • the policy network output the mu, and sigma
  • construct a gaussian distribution from mu and sigma
  • sample the data from the gaussian distribution
  • modify entropy

Note that this repo is only compatible with Mujoco in OpenAI gym. If you want to train agent in Atari domain, please refer to pytorch-a3c.

Usage

There're three tasks/modes for you: train, eval, develop.

  • train:
python main.py --env-name InvertedPendulum-v1 --num-processes 16 --task train
  • eval:
python main.py --env-name InvertedPendulum-v1 --task eval --display True --load_ckpt ckpt/a3c/InvertedPendulum-v1.a3c.100 

You can choose to display or not using display flags

  • develop:
python main.py --env-name InvertedPendulum-v1 --num-processes 16 --task develop

In some case that you want to check if you code runs as you want, you might resort to pdb. Here, I provide a develop mode, which only runs in one thread (easy to debug).

Experiment results

learning curve

The plot of total reward/episode length in 1000 steps:

  • InvertedPendulum-v1

In InvertedPendulum-v1, total reward exactly equal to episode length.

  • InvertedDoublePendulum-v1

Note that the x axis denote the time in minute

The above curve is plotted from python plot.py --log_path ./logs/a3c/InvertedPendulum-v1.a3c.log

video

  • InvertedPendulum-v1

IMAGE ALT TEXT HERE

  • InvertedDoublePendulum-v1

IMAGE ALT TEXT HERE

Requirements

  • gym
  • mujoco-py
  • pytorch
  • matplotlib (optional)
  • seaborn (optional)

TODO

I implement the ShareRMSProp in my_optim.py, but I haven't tried it yet.

Reference

Owner
Andrew
Andrew
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022