Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

Overview

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo

Block diagram of FCL-taco2, where the decoder generates mel-spectrograms in AR mode within each phoneme and is shared for all phonemes.

💬 Huawei Noah's Ark Lab is recruiting interns on speech processing fields, if you're interested, you're welcome to contact Dr. Deng: [email protected]

Training and inference scripts for FCL-taco2

Environment

  • python 3.6.10
  • torch 1.3.1
  • chainer 6.0.0
  • espnet 8.0.0
  • apex 0.1
  • numpy 1.19.1
  • kaldiio 2.15.1
  • librosa 0.8.0

Training and inference:

  • Step1. Data preparation & preprocessing
  1. Download LJSpeech

  2. Unpack downloaded LJSpeech-1.1.tar.bz2 to /xx/LJSpeech-1.1

  3. Obtain the forced alignment information by using Montreal forced aligner tool. Or you can download our alignment results, then unpack it to /xx/TextGrid

  4. Preprocess the dataset to extract mel-spectrograms, phoneme duration, pitch, energy and phoneme sequence by:

     python preprocessing.py --data-root /xx/LJSpeech-1.1 --textgrid-root /xx/TextGrid
    
  • Step2. Model training
  1. Training teacher model FCL-taco2-T:

     ./teacher_model_training.sh
    
  2. Training student model FCL-taco2-S:

     ./student_model_training.sh
    
  3. Parallel-WaveGAN vocoder training: follow instructions at here. You can also download the pre-trained PWG vocoder, and put the PWG model under the directory "vocoder".

  • Step3. Model evaluation
  1. FCL-taco2-T evaluation:

     ./inference_teacher.sh
    
  2. FCL-taco2-S evaluation:

     ./inference_student.sh
    

Citation

If the code is used in your research, please star our repo and cite our paper:

@inproceedings{wang2021fcl,
  title={Fcl-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech Synthesis},
  author={Wang, Disong and Deng, Liqun and Zhang, Yang and Zheng, Nianzu and Yeung, Yu Ting and Chen, Xiao and Liu, Xunying and Meng, Helen},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5714--5718},
  year={2021},
  organization={IEEE}
}
Owner
Disong Wang
PhD student @ CUHK, focus on voice conversion, speech synthesis, speech recognition, etc.
Disong Wang
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022