Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

Overview

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo

Block diagram of FCL-taco2, where the decoder generates mel-spectrograms in AR mode within each phoneme and is shared for all phonemes.

💬 Huawei Noah's Ark Lab is recruiting interns on speech processing fields, if you're interested, you're welcome to contact Dr. Deng: [email protected]

Training and inference scripts for FCL-taco2

Environment

  • python 3.6.10
  • torch 1.3.1
  • chainer 6.0.0
  • espnet 8.0.0
  • apex 0.1
  • numpy 1.19.1
  • kaldiio 2.15.1
  • librosa 0.8.0

Training and inference:

  • Step1. Data preparation & preprocessing
  1. Download LJSpeech

  2. Unpack downloaded LJSpeech-1.1.tar.bz2 to /xx/LJSpeech-1.1

  3. Obtain the forced alignment information by using Montreal forced aligner tool. Or you can download our alignment results, then unpack it to /xx/TextGrid

  4. Preprocess the dataset to extract mel-spectrograms, phoneme duration, pitch, energy and phoneme sequence by:

     python preprocessing.py --data-root /xx/LJSpeech-1.1 --textgrid-root /xx/TextGrid
    
  • Step2. Model training
  1. Training teacher model FCL-taco2-T:

     ./teacher_model_training.sh
    
  2. Training student model FCL-taco2-S:

     ./student_model_training.sh
    
  3. Parallel-WaveGAN vocoder training: follow instructions at here. You can also download the pre-trained PWG vocoder, and put the PWG model under the directory "vocoder".

  • Step3. Model evaluation
  1. FCL-taco2-T evaluation:

     ./inference_teacher.sh
    
  2. FCL-taco2-S evaluation:

     ./inference_student.sh
    

Citation

If the code is used in your research, please star our repo and cite our paper:

@inproceedings{wang2021fcl,
  title={Fcl-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech Synthesis},
  author={Wang, Disong and Deng, Liqun and Zhang, Yang and Zheng, Nianzu and Yeung, Yu Ting and Chen, Xiao and Liu, Xunying and Meng, Helen},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5714--5718},
  year={2021},
  organization={IEEE}
}
Owner
Disong Wang
PhD student @ CUHK, focus on voice conversion, speech synthesis, speech recognition, etc.
Disong Wang
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022