Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Overview

Welcome to Yearn Gnosis Safe!

This repository contains Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS.

The infrastructure is defined using AWS Cloud Development Kit (AWS CDK). AWS CDK is an open source software development framework to define your cloud application resources using familiar programming languages.

These definitions can then be synthesized to AWS CloudFormation Templates which can be deployed AWS.

Setting up your local environment

Clone this repository.

It is best practice to use an isolated environment when working with this project. To manually create a virtualenv virtual environment on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

$ pip install -r requirements.txt
$ pip install -r requirements-dev.txt

At this point you can now synthesize the CloudFormation template for this code.

$ cdk synth

Infrastructure

The following diagram provides a high level overview of the infrastructure that this repository deploys:

Infrastructure Diagram

Source

  1. The production bundle is deployed to an S3 bucket. You should be able to find the URL of the frontend UI by looking at the Bucket website endpoint in the Static website hosting section of the bucket's properties.
  2. The frontend UI uses blockchain nodes to power some of the functionality. You can use a service such as Infura or Alchemy.
  3. The UI performs most of its functionality by communicating with the Client Gateway.
  4. The Client Gateway retrieves information about safes from the transaction service. There is a transaction service deployed for Mainnet and Rinkeby.
  5. The Client Gateway also relies on the configuration service to determine which nodes and services to use for each network.
  6. Secrets store stores credentials for all the different services.
  7. The transaction service monitors Ethereum nodes for new blocks and inspects transactions with the trace API to index new safe related events.

Deploying Gnosis Safe

Deploying can be summarized in the following steps:

  1. Create infrastructure for secrets and add secrets
  2. Build production bundle of the Gnosis Safe UI
  3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)
  4. Index transaction data for existing safes

Prerequisites

Before you start you need to install AWS CDK CLI and bootstrap your AWS account:

  1. Prerequisites
  2. Install AWS CDK Locally
  3. Bootstrapping

The infrastructure in this repository requires a VPC with at least one public subnet. If you don't have a VPC that meets this criteria or want to provision a new VPC for this project, you can follow the instructions here.

To install a self hosted version of Gnosis Safe, you'll also need the following:

  1. An Ethereum Mainnet node with the Openethereum trace api
  2. An Ethereum Rinkeby node with the Openethereum trace api
  3. An Infura API key
  4. An Etherscan API key
  5. An Eth Gas Station API key
  6. An Exchange Rate API key

1. Create infrastructure for secrets and add secrets

Use the AWS CDK CLI to deploy the shared infrastructure including a Secrets Vault where all sensitive secrets will be stored:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy GnosisSafeStack/GnosisShared --require-approval never

CDK_DEPLOY_ACCOUNT and CDK_DEPLOY_REGION define the account and region you're deploying the infrastructure to respectively

The deployment should create a shared secrets vault for all your secrets as well 2 secrets vaults for Postgres database credentials: one for the Rinkeby Transaction Service and one for the Mainnet Transaction Service.

You can distinguish the different vaults by inspecting their tags. The Shared Secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSharedSecrets

Mainnet Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedMainnetTxDatabaseSecret

Rinkeby Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedRinkebyTxDatabaseSecret

Fill out the following credentials in the Shared Secrets vault:

  1. TX_DATABASE_URL_MAINNET - Use the Mainnet Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  2. TX_ETHEREUM_TRACING_NODE_URL_MAINNET - An Ethereum Mainnet node URL that has access to the trace API
  3. TX_ETHEREUM_NODE_URL_MAINNET - An Ethereum Mainnet node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_MAINNET
  4. TX_DJANGO_SECRET_KEY_MAINNET - Generate randomly using openssl rand -base64 18
  5. TX_DATABASE_URL_RINKEBY - Use the Rinkeby Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  6. TX_ETHEREUM_TRACING_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL that has access to the trace API
  7. TX_ETHEREUM_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_RINKEBY
  8. TX_DJANGO_SECRET_KEY_RINKEBY - Generate randomly using openssl rand -base64 18
  9. UI_REACT_APP_INFURA_TOKEN - An Infura API token to use in the Frontend UI
  10. UI_REACT_APP_SAFE_APPS_RPC_INFURA_TOKEN - An Infura API token that you want to use for RPC calls. Can be the same as UI_REACT_APP_INFURA_TOKEN.
  11. CFG_DJANGO_SUPERUSER_EMAIL - The email address for the superuser of the Configuration service
  12. CFG_DJANGO_SUPERUSER_PASSWORD - The password for the superuser of the Configuration service. Randomly generate using openssl rand -base64 18.
  13. CFG_DJANGO_SUPERUSER_USERNAME - The username for the superuser of the Configuration service
  14. CFG_SECRET_KEY - Generate randomly using openssl rand -base64 18
  15. CGW_EXCHANGE_API_KEY - Your Exchange Rate API key
  16. UI_REACT_APP_ETHERSCAN_API_KEY - Your Etherscan API key
  17. CGW_ROCKET_SECRET_KEY - Generate randomly using date |md5 | head -c24; echo
  18. UI_REACT_APP_ETHGASSTATION_API_KEY - Your Eth Gas Station API key
  19. CGW_WEBHOOK_TOKEN - Generate randomly using date |md5 | head -c24; echo
  20. password - Not used. Leave as is.

2. Build production bundle of the Gnosis Safe UI

The Gnosis Safe UI is part of this GitHub repo as a submodule in the docker/ui/safe-react folder. Ensure that the submodule has been initialized:

$ git submodule update --init --recursive

To build the production bundle of the Gnosis Safe UI, use the build script in the docker/ui directory:

$ cd docker/ui
$ ENVIRONMENT_NAME=production ./build.sh
$ ../..

3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)

Deploy the rest of the Gnosis Safe infrastructure:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy --all --require-approval never

4. Index transaction data for existing safes

Indexing happens automatically, however, it can take 12+ hours for indexing to catch up to the most recent transaction. Once indexing is complete, you should be able to add any existing safe.

Docker Containers

This project uses the official Gnosis Safe Docker Images as a base and applies some modifications to support a self-hosted version.

All customized Dockerfiles can be found in the docker/ directory.

Client Gateway

There are no modifications made to the original docker image.

Configuration Service

Adds a new command to bootstrap the configuration service with configurations that replicate the configurations found on the official Gnosis Safe Configuration Service.

The bootstrap command is designed to run only if there are no existing configurations.

Also modifies the default container command run by the container to run the bootstrap command on initialization.

Transactions Service

Installs a new CLI command reindex_master_copies_with_retry and a new Gnosis Safe indexer retryable_index_service that retries if a JSON RPC call fails during indexing. This was added to make indexing more reliable during initial bootstraping after a new install.

Gnosis Safe UI

Contains a git submodule with the official Gnosis Safe UI. It uses the official Gnosis Safe UI repository to build the production bundle.

Before building a production file, some of the original configuration files are replaced. The current official ui hard codes the url for the configuration and transaction services. The configuration files are replaced to point to the newly deployed configuration and transaction services.

Running docker/ui/build.sh will automatically replace the configuration files and build a production bundle.

The UI is the only component that isn't hosted in a docker container. It is hosted as a static website on S3.

Owner
Numan
Numan
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022