An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Overview

Channel LM Prompting (and beyond)

This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Channel Language Model Prompting for Few-Shot Text Classification" 2021.

For any questions about the paper or the code, or to request pretrained checkpoints, please contact the first author (email) or leave issues.

If you find our code or paper useful, please cite the paper:

@article{ min2021noisy ,
  title={ Noisy Channel Language Model Prompting for Few-Shot Text Classification },
  author={ Min, Sewon and Lewis, Mike and Hajishirzi, Hannaneh and Zettlemoyer, Luke },
  journal={ arXiv preprint },
  year={ 2021 }
}

This also includes implementations of many recent papers studying prompt-based learning. Please make sure to cite corresponding papers when you use implementations of the methods in this repo.

Content

  1. Installation
  2. Download & Preprocess Data
  3. Demonstration-based methods
  4. Tuning methods

You can run the channel model and the direct model for each of these methods. Please see Section 3 of the paper for more details about these formulations.

Installation

$ conda create -n lm-prompt python=3.8
$ conda activate lm-prompt
$ conda install pytorch=1.7.1 -c pytorch
$ pip install transformers==4.3.0

Download and Preprocess Data

We use (and modify) the data and the preprocessing script from Gao et al. ACL 2021 (paper, code) and Zhang et al. NeurIPS 2015 (paper, data).

To download the k-shot data (already preprocessed): Download the data (776MB) from this link. Pleae place data.zip under the same directory as the code and unzip it.

To download the original data and preprocess yourself:

pip install pandas==1.1.5 # for preprocessing script
mkdir data
cd data
wget https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar
tar xvf datasets.tar
cd ..

Also, download the data from here and place it in data/original.

Then, run python3 generative_k_shot_data.py, and you are done!

Optionally, you can specify arguments such as

  • --k: number of training examples (default is 16).
  • --balance: whether or not to guarantee the balance between labels in the training data; more precisely, whether k is the number of training examples in total or per label (default is False).
  • --data_dir: directory for the original data (default is data/original).
  • --output_dir: directory for the preprocessed data (default is data).

To check the data: You can see the list of eleven datasets used in the paper by ls data/k-shot. Each dataset consists of five different splits based on five different splits (test sets are the same).

Demonstration-based methods

This section is for methods which does not update any of the model parameters. For details about methods, please see Section 4.1 of the paper.

Zero-shot

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --do_zeroshot \
    --method {direct|channel}

This command will run zero-shot inference using GPT2-large using four different templates (verbalizers) as reported in the paper.

  • For "channel", please specify --method channel.
  • For "direct", please specify --method direct.
  • For "direct++", please run the command line without --split first (this will run inference using the N/A input, following Zhao et al. ICML 2021), and then run the command line with --method direct --use_calibration.

Useful notes:

  • Note that, once you run inference, it will save a cache in the out directory, and will re-load the cache file when you run the exact same command line.
  • You can adjust --batch_size if you run into OOM issue (default is 32).
  • Please note that GPU parallization is not implemented for inference.
  • To save a log file, please specify --log_file.
  • To use GPT2 with different sizes, please use --gpt2 {gpt2|gpt2-medium|gpt2-xl}.

Concat-based demonstration

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --do_zeroshot \
    --method {direct|channel} \
    --use_demonstrations \
    --k 16 \
    --seed {13|21|42|87|100}
  • You can modify k and seed to try different numbers of training examples and different seeds for the k-shot data.

Ensemble-based demonstration

Add --ensemble to the command line for the Concat-based demonstration method.

Tuning methods

This section is for methods that fully finetune the model parameters (standard finetuning), or update a very limited number of parameters (prompt tuning, head tuning and transformation tuning). For details about the methods, please see Section 4.2 of the paper.

Prompt tuning

python main.py \
    --task {task_name} \
    --split {dev|test} \
    --data_dir data \
    --out_dir out \
    --gpt2 gpt2-large \
    --method {direct|channel} \
    --prompt_tune \
    --do_train \
    --batch_size 32 \
    --lr {0.1|0.01|0.001}
  • Please see Appendix B of the paper to see which learning rate we used for each dataset.
  • Once you train the model, you can specify --do_check to load the existing checkpoint without retraining the model.
  • Please note that GPU parallization is implemented for training, but is not implemented for inference.
  • Note that, by default, we use the checkpoint that is trained for 100 steps.
  • To explore different numbers of prompts, please specify --n_prefix. The default value is 20, following the original prompt tuning paper (Lester et al. 2021).
  • If you want to explore zero-shot task transfer (Section 6.4 in the paper), you can (1) first train the model on the training data, and (2) run inference by specifying --task {task_name_for_test} --train_task {task_name_for_train} --do_check.

Head tuning

Use --head_tune instead of --prompt_tune to the command line for the Prompt tuning method. Note that head tuning is only for the direct baseline.

Transformation tuning

Use --transform_tune instead of --prompt_tune to the command line for the Prompt tuning method. Note that transformation tuning is only for the direct baseline.

Standard finetuning

To finetune the entire model parameters, as in typical finetuning, please do not specify any of --prompt_tune, --head_tune or --transform_tune.

Results

For all results, please check out Table 3 and Table 4 of the paper.

Owner
Sewon Min
PhD student @uwnlp
Sewon Min
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023