IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

Overview

IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020) Tweet

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to your questions. This repo is almost the same with Another-Version, and you can also refer to that version.

Introduction

Abstract

The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such a problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing scalability and performance. In this paper, we propose an instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. Besides, we propose the region-guided regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. Our method is so concise and efficient that it is easy to be generalized to other unsupervised domain adaptation methods. Experiments on 'GTA5 to Cityscapes' and 'SYNTHIA to Cityscapes' demonstrate the superior performance of our approach compared with the state-of-the-art methods.

IAST Overview

Result

source target device GPU memory mIoU-19 mIoU-16 mIoU-13 model
GTA5 Cityscapes Tesla V100-32GB 18.5 GB 51.88 - - download
GTA5 Cityscapes Tesla T4 6.3 GB 51.20 - - download
SYNTHIA Cityscapes Tesla V100-32GB 18.5 GB - 51.54 57.81 download
SYNTHIA Cityscapes Tesla T4 9.8 GB - 51.24 57.70 download

Setup

1) Envs

  • Pytorch >= 1.0
  • Python >= 3.6
  • cuda >= 9.0

Install python packages

$ pip install -r  requirements.txt

apex : Tools for easy mixed precision and distributed training in Pytorch

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

2) Download Dataset

Please download the datasets from these links:

Dataset directory should have this structure:

${ROOT_DIR}/data/GTA5/
${ROOT_DIR}/data/GTA5/images
${ROOT_DIR}/data/GTA5/labels

${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/RGB
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/GT

${ROOT_DIR}/data/cityscapes
${ROOT_DIR}/data/cityscapes/leftImg8bit
${ROOT_DIR}/data/cityscapes/gtFine

3) Download Pretrained Models

We provide pre-trained models. We recommend that you download them and put them in pretrained_models/, which will save a lot of time for training and ensure consistent results.

V100 models

T4 models

(Optional) Of course, if you have plenty of time, you can skip this step and start training from scratch. We also provide these scripts.

Training

Our original experiments are all carried out on Tesla-V100, and there will be a large number of GPU memory usage (batch_size=8). For low GPU memory devices, we also trained on Tesla-T4 to ensure that most people can reproduce the results (batch_size=2).

Start self-training (download the pre-trained models first)

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_t4.sh

(Optional) Training from scratch

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_t4.sh

Evaluation

cd code
python eval.py --config_file  --resume_from 

Support multi-scale testing and flip testing.

# Modify the following parameters in the config file

TEST:
  RESIZE_SIZE: [[1024, 512], [1280, 640], [1536, 768], [1800, 900], [2048, 1024]] 
  USE_FLIP: False 

Citation

Please cite this paper in your publications if it helps your research:

@article{mei2020instance,
  title={Instance Adaptive Self-Training for Unsupervised Domain Adaptation},
  author={Mei, Ke and Zhu, Chuang and Zou, Jiaqi and Zhang, Shanghang},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
}

Author

Ke Mei, Chuang Zhu

If you have any questions, you can contact me directly.

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022