OntoProtein: Protein Pretraining With Ontology Embedding

Overview

OntoProtein

This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that make use of structure in GO (Gene Ontology) into text-enhanced protein pre-training model.

Quick links

Overview

In this work we present OntoProtein, a knowledge-enhanced protein language model that jointly optimize the KE and MLM objectives, which bring excellent improvements to a wide range of protein tasks. And we introduce ProteinKG25, a new large-scale KG dataset, promting the research on protein language pre-training.

Requirements

To run our code, please install dependency packages for related steps.

Environment for pre-training data generation

python3.8 / biopython 1.37 / goatools

Environment for OntoProtein pre-training

python3.8 / pytorch 1.9 / transformer 4.5.1+ / deepspeed 0.5.1/ lmdb /

Environment for protein-related tasks

python3.8 / pytorch 1.9 / transformer 4.5.1+ / lmdb

Note: environments configurations of some baseline models or methods in our experiments, e.g. BLAST, DeepGraphGO, we provide related links to configurate as follows:

BLAST / Interproscan / DeepGraphGO / GNN-PPI

Data preparation

For pretraining OntoProtein, fine-tuning on protein-related tasks and inference, we provide acquirement approach of related data.

Pre-training data

To incorporate Gene Ontology knowledge into language models and train OntoProtein, we construct ProteinKG25, a large-scale KG dataset with aligned descriptions and protein sequences respectively to GO terms and protein entities. There have two approach to acquire the pre-training data: 1) download our prepared data ProteinKG25, 2) generate your own pre-training data.

times

Download released data

We have released our prepared data ProteinKG25 in Google Drive.

The whole compressed package includes following files:

  • go_def.txt: GO term definition, which is text data. We concatenate GO term name and corresponding definition by colon.
  • go_type.txt: The ontology type which the specific GO term belong to. The index is correponding to GO ID in go2id.txt file.
  • go2id.txt: The ID mapping of GO terms.
  • go_go_triplet.txt: GO-GO triplet data. The triplet data constitutes the interior structure of Gene Ontology. The data format is < h r t>, where h and t are respectively head entity and tail entity, both GO term nodes. r is relation between two GO terms, e.g. is_a and part_of.
  • protein_seq.txt: Protein sequence data. The whole protein sequence data are used as inputs in MLM module and protein representations in KE module.
  • protein2id.txt: The ID mapping of proteins.
  • protein_go_train_triplet.txt: Protein-GO triplet data. The triplet data constitutes the exterior structure of Gene Ontology, i.e. Gene annotation. The data format is <h r t>, where h and t are respectively head entity and tail entity. It is different from GO-GO triplet that a triplet in Protein-GO triplet means a specific gene annotation, where the head entity is a specific protein and tail entity is the corresponding GO term, e.g. protein binding function. r is relation between the protein and GO term.
  • relation2id.txt: The ID mapping of relations. We mix relations in two triplet relation.

Generate your own pre-training data

For generating your own pre-training data, you need download following raw data:

  • go.obo: the structure data of Gene Ontology. The download link and detailed format see in Gene Ontology`
  • uniprot_sprot.dat: protein Swiss-Prot database. [link]
  • goa_uniprot_all.gpa: Gene Annotation data. [link]

When download these raw data, you can excute following script to generate pre-training data:

python tools/gen_onto_protein_data.py

Downstream task data

Our experiments involved with several protein-related downstream tasks. [Download datasets]

Protein pre-training model

You can pre-training your own OntoProtein based above pretraining dataset. We provide the script bash script/run_pretrain.sh to run pre-training. And the detailed arguments are all listed in src/training_args.py, you can set pre-training hyperparameters to your need.

Usage for protein-related tasks

Running examples

The shell files of training and evaluation for every task are provided in script/ , and could directly run.

Also, you can utilize the running codes run_downstream.py , and write your shell files according to your need:

  • run_downstream.py: support {ss3, ss8, contact, remote_homology, fluorescence, stability} tasks;

Training models

Running shell files: bash script/run_{task}.sh, and the contents of shell files are as follow:

sh run_main.sh \
    --model ./model/ss3/ProtBertModel \
    --output_file ss3-ProtBert \
    --task_name ss3 \
    --do_train True \
    --epoch 5 \
    --optimizer AdamW \
    --per_device_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --eval_step 100 \
    --eval_batchsize 4 \
    --warmup_ratio 0.08 \
    --frozen_bert False

You can set more detailed parameters in run_main.sh. The details of main.sh are as follows:

LR=3e-5
SEED=3
DATA_DIR=data/datasets
OUTPUT_DIR=data/output_data/$TASK_NAME-$SEED-$OI

python run_downstream.py \
  --task_name $TASK_NAME \
  --data_dir $DATA_DIR \
  --do_train $DO_TRAIN \
  --do_predict True \
  --model_name_or_path $MODEL \
  --per_device_train_batch_size $BS \
  --per_device_eval_batch_size $EB \
  --gradient_accumulation_steps $GS \
  --learning_rate $LR \
  --num_train_epochs $EPOCHS \
  --warmup_ratio $WR \
  --logging_steps $ES \
  --eval_steps $ES \
  --output_dir $OUTPUT_DIR \
  --seed $SEED \
  --optimizer $OPTIMIZER \
  --frozen_bert $FROZEN_BERT \
  --mean_output $MEAN_OUTPUT \

Notice: the best checkpoint is saved in OUTPUT_DIR/.

Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023