Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

Overview

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers

facebook

1   Using Colab

  • Please notice that the notebook assumes that you are using a GPU. To switch runtime go to Runtime -> change runtime type and select GPU.
  • Installing all the requirements may take some time. After installation, please restart the runtime.

2   Running Examples

Notice that we have two jupyter notebooks to run the examples presented in the paper.

  • The notebook for LXMERT contains both the examples from the paper and examples with images from the internet and free form questions. To use your own input, simply change the URL variable to your image and the question variable to your free form question.

    LXMERT.PNG LXMERT-web.PNG
  • The notebook for DETR contains the examples from the paper. To use your own input, simply change the URL variable to your image.

    DETR.PNG

3   Reproduction of results

3.1   VisualBERT

Run the run.py script as follows:

CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd` python VisualBERT/run.py --method=<method_name> --is-text-pert=<true/false> --is-positive-pert=<true/false> --num-samples=10000 config=projects/visual_bert/configs/vqa2/defaults.yaml model=visual_bert dataset=vqa2 run_type=val checkpoint.resume_zoo=visual_bert.finetuned.vqa2.from_coco_train env.data_dir=/path/to/data_dir training.num_workers=0 training.batch_size=1 training.trainer=mmf_pert training.seed=1234

Note

If the datasets aren't already in env.data_dir, then the script will download the data automatically to the path in env.data_dir.

3.2   LXMERT

  1. Download valid.json:

    pushd data/vqa
    wget https://nlp.cs.unc.edu/data/lxmert_data/vqa/valid.json
    popd
  2. Download the COCO_val2014 set to your local machine.

    Note

    If you already downloaded COCO_val2014 for the VisualBERT tests, you can simply use the same path you used for VisualBERT.

  3. Run the perturbation.py script as follows:

    CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd` python lxmert/lxmert/perturbation.py  --COCO_path /path/to/COCO_val2014 --method <method_name> --is-text-pert <true/false> --is-positive-pert <true/false>

3.3   DETR

  1. Download the COCO dataset as described in the DETR repository. Notice you only need the validation set.

  2. Lower the IoU minimum threshold from 0.5 to 0.2 using the following steps:

    • Locate the cocoeval.py script in your python library path:

      find library path:

      import sys
      print(sys.path)

      find cocoeval.py:

      cd /path/to/lib
      find -name cocoeval.py
    • Change the self.iouThrs value in the setDetParams function (which sets the parameters for the COCO detection evaluation) in the Params class as follows:

      insead of:

      self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)

      use:

      self.iouThrs = np.linspace(.2, 0.95, int(np.round((0.95 - .2) / .05)) + 1, endpoint=True)
  3. Run the segmentation experiment, use the following command:

    CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd`  python DETR/main.py --coco_path /path/to/coco/dataset  --eval --masks --resume https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth --batch_size 1 --method <method_name>

4   Credits

Owner
Hila Chefer
MSc Student @ Tel Aviv University & Intern @ Microsoft's Innovation Labs
Hila Chefer
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
đŸ•šī¸ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022