This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Overview

Semantic SLAM

This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extracted from object detections in order to create a sparse semantic map of the environment, thus optimizing the drift of the VO/VIO algorithms.

In order to run this package you will need two additional modules

Currently it can extract planar surfaces and create a semantic map from from the following objects:

  • chair
  • tvmonitor
  • book
  • keyboard
  • laptop
  • bucket
  • car

Related Paper:

@ARTICLE{9045978,
  author={Bavle, Hriday and De La Puente, Paloma and How, Jonathan P. and Campoy, Pascual},
  journal={IEEE Access}, 
  title={VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems}, 
  year={2020},
  volume={8},
  number={},
  pages={60704-60718},
  doi={10.1109/ACCESS.2020.2983121}}

Video

Semantic SLAM

How do I set it up?

First install g2o following these instructions (Tested on Kinetic and Melodic Distributions):

- sudo apt-get install ros-$ROS_DISTRO-libg2o
- sudo cp -r /opt/ros/$ROS_DISTRO/lib/libg2o_* /usr/local/lib
- sudo cp -r /opt/ros/$ROS_DISTRO/include/g2o /usr/local/include

Install OctopMap server for map generation capabilities:

- sudo apt install ros-$ROS_DISTRO-octomap*

Try a simple example with pre-recorded VIO pose and a blue bucket detector:

Create a ros workspace and clone the following packages:

  • Download the rosbag:
    wget -P ~/Downloads/ https://www.dropbox.com/s/jnywuvcn2m9ubu2/entire_lab_3_rounds.bag
  • Create a workspace, clone the repo and compile:
    mkdir -p workspace/ros/semantic_slam_ws/src/ && cd workspace/ros/semantic_slam_ws/src/    
    git clone https://github.com/hridaybavle/semantic_slam && git clone https://bitbucket.org/hridaybavle/bucket_detector.git   
    cd .. && catkin build --cmake-args -DCMAKE_BUILD_TYPE=Release
  • Launch and visualize
    source devel/setup.bash
    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true  

test

Using Docker Image

If the code is giving problems with you local machine, you can try the docker image created with the repo and the required settings.

Download Docker from: Docker

Follow the commands to run the algorithm with the docker

  docker pull hridaybavle/semantic_slam:v1 	
  docker run --rm -it --net="host" -p 11311:11311 hridaybavle/semantic_slam:v1 bash
  cd ~/workspace/ros/semantic_slam_ws/
  source devel/setup.bash
  roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=false  

Open a new terminal and rviz in local machine

  cd ~/Downloads/ && wget https://raw.githubusercontent.com/hridaybavle/semantic_slam/master/rviz/graph_semantic_slam.rviz
  rviz -d graph_semantic_slam.rviz	

Subsribed Topics

Published Topics

The configurations of the algorithms can be found inside the cfg folder in order to be changed accordingly.

Published TFs

  • map to odom transform: The transform published between the map frame and the odom frame after the corrections from the semantic SLAM.

  • base_link to odom transform: The transform published between the base_link (on the robot) frame and the odom frame as estimated by the VO/VIO algorithm.

You might also like...
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

Pytorch implementation of paper:
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

Sequence lineage information extracted from RKI sequence data repo
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Code for
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

 Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

Comments
  • errors at last step

    errors at last step

    Hi, I have finished all the steps following the instructions and nothing goes wrong. But when I run

    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true  
    

    I get errors like this and it stucks for a while.

    # Using CSparse poseDim -1 landMarkDim -1 blockordering 0
    done
    keyframe_delta_trans 0.5
    keyframe_delta_angle 0.5
    keyframe_delta_time 1
    use_const_inf_matrix: 1
    const_stddev_x: 0.00667
    const_stddev_q: 1e-05
    Initialized mapping thread 
    camera angle in radians: 0.59219
    update keyframe every detection: 1
    add first landmark: 0
    [semantic_graph_slam_node-9] process has died [pid 23067, exit code -11, cmd /home/nrc/workspace/ros/semantic_slam_ws/devel/lib/semantic_SLAM/semantic_graph_SLAM_node __name:=semantic_graph_slam_node __log:=/home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/semantic_graph_slam_node-9.log].
    log file: /home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/semantic_graph_slam_node-9*.log
    

    then I get this. It seems that the visualization program doesn't go right.

    [rosbag-2] process has finished cleanly
    log file: /home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/rosbag-2*.log
    

    Is there something I have missed? Thank you!

    opened by ZhengXinyue 8
  • [semantic_graph_slam_node-9] process has died

    [semantic_graph_slam_node-9] process has died

    Hi, I have finished all the steps following the instructions and nothing goes wrong. But when I run

    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true
    

    I get errors like this.

    done
    keyframe_delta_trans 0.5
    keyframe_delta_angle 0.5
    keyframe_delta_time 1
    use_const_inf_matrix: 1
    const_stddev_x: 0.00667
    const_stddev_q: 1e-05
    camera angle in radians: 0.59219
    update keyframe every detection: 1
    add first landmark: 0
    [ INFO] [1591944956.099907360, 1661396775.076756992]: waitForService: Service [/depth_rectifier_manager/load_nodelet] is now available.
    [ INFO] [1591944956.100243666, 1661396775.076756992]: waitForService: Service [/depth_manager/load_nodelet] is now available.
    [ INFO] [1591944956.545617511, 1661396775.518832629]: Stereo is NOT SUPPORTED
    [ INFO] [1591944956.545842654, 1661396775.518832629]: OpenGl version: 4.5 (GLSL 4.5).
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000614, using 1248 valid points
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000748, using 1444 valid points
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.001710, using 2303 valid points
    [semantic_graph_slam_node-9] process has died [pid 27314, exit code -9, cmd /home/nrc/hd/workspace/ros/semantic_slam_ws/devel/lib/semantic_SLAM/semantic_graph_SLAM_node __name:=semantic_graph_slam_node __log:=/home/nrc/.ros/log/c2c4ddd8-ac79-11ea-96ed-8ca982ff1833/semantic_graph_slam_node-9.log].
    log file: /home/nrc/.ros/log/c2c4ddd8-ac79-11ea-96ed-8ca982ff1833/semantic_graph_slam_node-9*.log
    

    When it occurs

    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000614, using 1248 valid points
    

    the program is still mapping , so I think the problem is not caused by 'pcl'.

    I tried to run the launchfile seperately :

    ROS_NAMESPACE=camera/color rosrun image_proc image_proc 
    roslaunch semantic_SLAM shape.launch  
    rosrun semantic_SLAM  semantic_graph_SLAM_node
    

    But at the last step i got 'Segmentation fault :

    add first landmark: 0
    Segmentation fault (core dumped)
    

    Do you have any idea about it? Thanks a lot !!!

    opened by He-Rong 6
  • Dataset download failure problem

    Dataset download failure problem

    Hello, when I run the sample code, I always encounter network interruptions or unknown errors at the last moment when downloading the dataset entire_lab_3_rounds.bag. Can you provide a new way to download the bag?

    opened by kycwx 2
  • Problemas de incompatibilidad de opencv en el bucket detector

    Problemas de incompatibilidad de opencv en el bucket detector

    Hola, he conseguido que ambos paquetes en conjunto (semantic slam y bucket detector) funciones bien en una distro de ubuntu virgen con ROS melodic, sin embargo, cuando migro al pc donde trabajo habitualmente y que tiene ya instaladas dependencias anteriores y demás me encuentro con estos errores referentes a opencv: Captura de pantalla de 2021-05-26 11-29-18 Imagino que se deben a incompatibilidades entre versiones de opencv, podrías confirmarme esto último? Sería posible trabajar con una versión de opencv diferente? Gracias, un saludo!

    opened by iandresolares 2
Releases(2.0.0)
Owner
Hriday Bavle
Postdoctoral Researcher at the University of Luxembourg. My research interests are VO/VIO, SLAM, Perception and Planning applied to Mobile Robots.
Hriday Bavle
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022