Template repository for managing machine learning research projects built with PyTorch-Lightning

Overview

Mjolnir

Mjolnir: Thor's hammer, a divine instrument making its holder worthy of wielding lightning.

Template repository for managing machine learning research projects built with PyTorch-Lightning, using Anaconda for Python Dependencies and Sane Quality Defaults (Black, Flake, isort).

Template created by Sidd Karamcheti.


Contributing

Key section if this is a shared research project (e.g., other collaborators). Usually you should have a detailed set of instructions in CONTRIBUTING.md - Notably, before committing to the repository, make sure to set up your dev environment and pre-commit install (pre-commit install)!

Here are sample contribution guidelines (high-level):

  • Install and activate the Conda Environment using the QUICKSTART instructions below.

  • On installing new dependencies (via pip or conda), please make sure to update the environment- .yaml files via the following command (note that you need to separately create the environment-cpu.yaml file by exporting from your local development environment!):

    make serialize-env --arch=


Quickstart

Note: Replace instances of mjolnir and other instructions with instructions specific to your repository!

Clones mjolnir to the working directory, then walks through dependency setup, mostly leveraging the environment- .yaml files.

Shared Environment (for Clusters w/ Centralized Conda)

Note: The presence of this subsection depends on your setup. With the way the Stanford NLP Cluster has been set up, and the way I've set up the ILIAD Cluster, this section makes it really easy to maintain dependencies across multiple users via centralized conda environments, but YMMV.

@Sidd (or central repository maintainer) has already set up the conda environments in Stanford-NLP/ILIAD. The only necessary steps for you to take are cloning the repo, activating the appropriate environment, and running pre-commit install to start developing.

Local Development - Linux w/ GPU & CUDA 11.0

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path.

Ensure that you're using the appropriate environment- .yaml file --> if PyTorch doesn't build properly for your setup, checking the CUDA Toolkit is usually a good place to start. We have environment- .yaml files for CUDA 11.0 (and any additional CUDA Toolkit support can be added -- file an issue if necessary).

git clone https://github.com/pantheon-616/mjolnir.git
cd mjolnir
conda env create -f environments/environment-gpu.yaml  # Choose CUDA Kernel based on Hardware - by default used 11.0!
conda activate mjolnir
pre-commit install  # Important!

Local Development - CPU (Mac OS & Linux)

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path. Use the -cpu environment file.

git clone https://github.com/pantheon-616/mjolnir.git
cd mjolnir
conda env create -f environments/environment-cpu.yaml
conda activate mjolnir
pre-commit install  # Important!

Usage

This repository comes with sane defaults for black, isort, and flake8 for formatting and linting. It additionally defines a bare-bones Makefile (to be extended for your specific build/run needs) for formatting/checking, and dumping updated versions of the dependencies (after installing new modules).

Other repository-specific usage notes should go here (e.g., training models, running a saved model, running a visualization, etc.).

Repository Structure

High-level overview of repository file-tree (expand on this as you build out your project). This is meant to be brief, more detailed implementation/architectural notes should go in ARCHITECTURE.md.

  • conf - Quinine Configurations (.yaml) for various runs (used in lieu of argparse or typed-argument-parser)
  • environments - Serialized Conda Environments for both CPU and GPU (CUDA 11.0). Other architectures/CUDA toolkit environments can be added here as necessary.
  • src/ - Source Code - has all utilities for preprocessing, Lightning Model definitions, utilities.
    • preprocessing/ - Preprocessing Code (fill in details for specific project).
    • models/ - Lightning Modules (fill in details for specific project).
  • tests/ - Tests - Please test your code... just, please (more details to come).
  • train.py - Top-Level (main) entry point to repository, for training and evaluating models. Can define additional top-level scripts as necessary.
  • Makefile - Top-level Makefile (by default, supports conda serialization, and linting). Expand to your needs.
  • .flake8 - Flake8 Configuration File (Sane Defaults).
  • .pre-commit-config.yaml - Pre-Commit Configuration File (Sane Defaults).
  • pyproject.toml - Black and isort Configuration File (Sane Defaults).
  • ARCHITECTURE.md - Write up of repository architecture/design choices, how to extend and re-work for different applications.
  • CONTRIBUTING.md - Detailed instructions for contributing to the repository, in furtherance of the default instructions above.
  • README.md - You are here!
  • LICENSE - By default, research code is made available under the MIT License. Change as you see fit, but think deeply about why!

Start-Up (from Scratch)

Use these commands if you're starting a repository from scratch (this shouldn't be necessary for your collaborators , since you'll be setting things up, but I like to keep this in the README in case things break in the future). Generally, if you're just trying to run/use this code, look at the Quickstart section above.

GPU & Cluster Environments (CUDA 11.0)

conda create --name mjolnir python=3.8
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch   # CUDA=11.0 on most of Cluster!
conda install ipython
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit quinine wandb

# Install other dependencies via pip below -- conda dependencies should be added above (always conda before pip!)
...

CPU Environments (Usually for Local Development -- Geared for Mac OS & Linux)

Similar to the above, but installs the CPU-only versions of Torch and similar dependencies.

conda create --name mjolnir python=3.8
conda install pytorch torchvision torchaudio -c pytorch
conda install ipython
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit quinine wandb

# Install other dependencies via pip below -- conda dependencies should be added above (always conda before pip!)
...

Containerized Setup

Support for running mjolnir inside of a Docker or Singularity container is TBD. If this support is urgently required, please file an issue.

Owner
Sidd Karamcheti
PhD Student at Stanford & Research Intern at Hugging Face 🤗
Sidd Karamcheti
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021