Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Overview

Codes for ECBSR

Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
Xindong Zhang, Hui Zeng, Lei Zhang
ACM Multimedia 2021

Codes

An older version implemented based on EDSR is place on /legacy folder. For more details, please refer to /legacy/README.md. The following is the lighten version implemented by us.

Dependencies & Installation

Please refer to the following simple steps for installation.

git clone https://github.com/xindongzhang/ECBSR.git
cd ECBSR
pip install -r requirements.txt

Training and benchmarking data can be downloaded from DIV2K and benchmark, respectively. Thanks for excellent work by EDSR.

Training & Testing

You could also try less/larger batch-size, if there are limited/enough hardware resources in your GPU-server. ECBSR is trained and tested with colors=1, e.g Y channel out of Ycbcr.

cd ECBSR

## ecbsr-m4c8-x2-prelu(you can revise the parameters of the yaml-config file accordding to your environments)
python train.py --config ./configs/ecbsr_x2_m4c8_prelu.yml

## ecbsr-m4c8-x4-prelu
python train.py --config ./configs/ecbsr_x4_m4c8_prelu.yml

## ecbsr-m4c16-x2-prelu
python train.py --config ./configs/ecbsr_x2_m4c16_prelu.yml

## ecbsr-m4c16-x4-prelu
python train.py --config ./configs/ecbsr_x4_m4c16_prelu.yml

Hardware deployment

Frontend conversion

We provide convertor for model conversion to different frontend, e.g. onnx/pb/tflite. We currently developed and tested the model with only one-channel(Y out of Ycbcr). Since the internal data-layout are quite different between tf(NHWC) and pytorch(NCHW), espetially for the pixelshuffle operation. Care must be taken to handle the data-layout, if you want to extend the pytorch-based training framework to RGB input data and deploy it on tensorflow. Follow are the demo scripts for model conversion to specific frontend:

## convert the trained pytorch model to onnx with plain-topology.
python convert.py --config xxx.yml --target_frontend onnx --output_folder XXX --inp_n 1 --inp_c 1 --inp_h 270 --inp_w 480

## convert the trained pytorch model to pb-1.x with plain-topology.
python convert.py --config xxx.yml --target_frontend pb-1.x --output_folder XXX --inp_n 1 --inp_c 1 --inp_h 270 --inp_w 480

## convert the trained pytorch model to pb-ckpt with plain-topology
python convert.py --config xxx.yml --target_frontend pb-ckpt --output_folder XXX --inp_n 1 --inp_c 1 --inp_h 270 --inp_w 480

AI-Benchmark

You can download the newest version of evaluation tool from AI-Benchmark. Then you can install the app via ADB tools,

adb install -r [name-of-ai-benchmar].apk

MNN (Come soon!)

For universal CPU & GPU of mobile hardware implementation.

RKNN (Come soon!)

For NPU inplementation of Rockchip hardware, e.g. RK3399Pro/RK1808.

MiniNet (Come soon!)

A super light-weight CNN inference framework implemented by us, with only conv-3x3, element-wise op, ReLU(PReLU) activations, and pixel-shuffle for common super resolution task. For more details, please refer to /ECBSR/deploy/mininet

Quantization tools (Come soon!)

For fixed-arithmetic quantization of image super resolution.

Citation


@article{zhang2021edge,
  title={Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices},
  author={Zhang, Xindong and Zeng, Hui and Zhang, Lei},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia (ACM MM)},
  year={2021}
}

Acknowledgement

Thanks EDSR for the pioneering work and excellent codebase! The implementation integrated with EDSR is placed on /legacy

Owner
xindong zhang
xindong zhang
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022