A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Overview

Continuous Wasserstein-2 Benchmark

This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark (paper on arxiv) by Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Alexander Filippov and Evgeny Burnaev.

The repository contains a set of continuous benchmark measures for testing optimal transport solvers for quadratic cost (Wasserstein-2 distance), the code for optimal transport solvers and their evaluation.

Citation

@article{korotin2021neural,
  title={Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark},
  author={Korotin, Alexander and Li, Lingxiao and Genevay, Aude and Solomon, Justin and Filippov, Alexander and Burnaev, Evgeny},
  journal={arXiv preprint arXiv:2106.01954},
  year={2021}
}

Pre-requisites

The implementation is GPU-based. Single GPU (~GTX 1080 ti) is enough to run each particular experiment. Tested with

torch==1.3.0 torchvision==0.4.1

The code might not run as intended in newer torch versions.

Related repositories

Loading Benchmark Pairs

from src import map_benchmark as mbm

# Load benchmark pair for dimension 16 (2, 4, ..., 256)
benchmark = mbm.Mix3ToMix10Benchmark(16)
# OR load 'Early' images benchmark pair ('Early', 'Mid', 'Late')
# benchmark = mbm.CelebA64Benchmark('Early')

# Sample 32 random points from the benchmark measures
X = benchmark.input_sampler.sample(32)
Y = benchmark.output_sampler.sample(32)

# Compute the true forward map for points X
X.requires_grad_(True)
Y_true = benchmark.map_fwd(X, nograd=True)

Repository structure

All the experiments are issued in the form of pretty self-explanatory jupyter notebooks (notebooks/). Auxilary source code is moved to .py modules (src/). Continuous benchmark pairs are stored as .pt checkpoints (benchmarks/).

Evaluation of Existing Solvers

We provide all the code to evaluate existing dual OT solvers on our benchmark pairs. The qualitative results are shown below. For quantitative results, see the paper.

Testing Existing Solvers On High-Dimensional Benchmarks

  • notebooks/MM_test_hd_benchmark.ipynb -- testing [MM], [MMv2] solvers and their reversed versions
  • notebooks/MMv1_test_hd_benchmark.ipynb -- testing [MMv1] solver
  • notebooks/MM-B_test_hd_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/W2_test_hd_benchmark.ipynb -- testing [W2] solver and its reversed version
  • notebooks/QC_test_hd_benchmark.ipynb -- testing [QC] solver
  • notebooks/LS_test_hd_benchmark.ipynb -- testing [LS] solver

Testing Existing Solvers On Images Benchmark Pairs (CelebA 64x64 Aligned Faces)

  • notebooks/MM_test_images_benchmark.ipynb -- testing [MM] solver and its reversed version
  • notebooks/W2_test_images_benchmark.ipynb -- testing [W2]
  • notebooks/MM-B_test_images_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/QC_test_images_benchmark.ipynb -- testing [QC] solver

[LS], [MMv2], [MMv1] solvers are not considered in this experiment.

Generative Modeling by Using Existing Solvers to Compute Loss

Warning: training may take several days before achieving reasonable FID scores!

  • notebooks/MM_test_image_generation.ipynb -- generative modeling by [MM] solver or its reversed version
  • notebooks/W2_test_image_generation.ipynb -- generative modeling by [W2] solver

For [QC] solver we used the code from the official WGAN-QC repo.

Training Benchmark Pairs From Scratch

This code is provided for completeness and is not intended to be used to retrain existing benchmark pairs, but might be used as the base to train new pairs on new datasets. High-dimensional benchmak pairs can be trained from scratch. Training images benchmark pairs requires generator network checkpoints. We used WGAN-QC model to provide such checkpoints.

  • notebooks/W2_train_hd_benchmark.ipynb -- training high-dimensional benchmark bairs by [W2] solver
  • notebooks/W2_train_images_benchmark.ipynb -- training images benchmark bairs by [W2] solver

Credits

Owner
Alexander
PhD Student (Computer Science) at Skolkovo University of Science and Technology (Moscow, Russia)
Alexander
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021