A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Overview

Continuous Wasserstein-2 Benchmark

This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark (paper on arxiv) by Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Alexander Filippov and Evgeny Burnaev.

The repository contains a set of continuous benchmark measures for testing optimal transport solvers for quadratic cost (Wasserstein-2 distance), the code for optimal transport solvers and their evaluation.

Citation

@article{korotin2021neural,
  title={Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark},
  author={Korotin, Alexander and Li, Lingxiao and Genevay, Aude and Solomon, Justin and Filippov, Alexander and Burnaev, Evgeny},
  journal={arXiv preprint arXiv:2106.01954},
  year={2021}
}

Pre-requisites

The implementation is GPU-based. Single GPU (~GTX 1080 ti) is enough to run each particular experiment. Tested with

torch==1.3.0 torchvision==0.4.1

The code might not run as intended in newer torch versions.

Related repositories

Loading Benchmark Pairs

from src import map_benchmark as mbm

# Load benchmark pair for dimension 16 (2, 4, ..., 256)
benchmark = mbm.Mix3ToMix10Benchmark(16)
# OR load 'Early' images benchmark pair ('Early', 'Mid', 'Late')
# benchmark = mbm.CelebA64Benchmark('Early')

# Sample 32 random points from the benchmark measures
X = benchmark.input_sampler.sample(32)
Y = benchmark.output_sampler.sample(32)

# Compute the true forward map for points X
X.requires_grad_(True)
Y_true = benchmark.map_fwd(X, nograd=True)

Repository structure

All the experiments are issued in the form of pretty self-explanatory jupyter notebooks (notebooks/). Auxilary source code is moved to .py modules (src/). Continuous benchmark pairs are stored as .pt checkpoints (benchmarks/).

Evaluation of Existing Solvers

We provide all the code to evaluate existing dual OT solvers on our benchmark pairs. The qualitative results are shown below. For quantitative results, see the paper.

Testing Existing Solvers On High-Dimensional Benchmarks

  • notebooks/MM_test_hd_benchmark.ipynb -- testing [MM], [MMv2] solvers and their reversed versions
  • notebooks/MMv1_test_hd_benchmark.ipynb -- testing [MMv1] solver
  • notebooks/MM-B_test_hd_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/W2_test_hd_benchmark.ipynb -- testing [W2] solver and its reversed version
  • notebooks/QC_test_hd_benchmark.ipynb -- testing [QC] solver
  • notebooks/LS_test_hd_benchmark.ipynb -- testing [LS] solver

Testing Existing Solvers On Images Benchmark Pairs (CelebA 64x64 Aligned Faces)

  • notebooks/MM_test_images_benchmark.ipynb -- testing [MM] solver and its reversed version
  • notebooks/W2_test_images_benchmark.ipynb -- testing [W2]
  • notebooks/MM-B_test_images_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/QC_test_images_benchmark.ipynb -- testing [QC] solver

[LS], [MMv2], [MMv1] solvers are not considered in this experiment.

Generative Modeling by Using Existing Solvers to Compute Loss

Warning: training may take several days before achieving reasonable FID scores!

  • notebooks/MM_test_image_generation.ipynb -- generative modeling by [MM] solver or its reversed version
  • notebooks/W2_test_image_generation.ipynb -- generative modeling by [W2] solver

For [QC] solver we used the code from the official WGAN-QC repo.

Training Benchmark Pairs From Scratch

This code is provided for completeness and is not intended to be used to retrain existing benchmark pairs, but might be used as the base to train new pairs on new datasets. High-dimensional benchmak pairs can be trained from scratch. Training images benchmark pairs requires generator network checkpoints. We used WGAN-QC model to provide such checkpoints.

  • notebooks/W2_train_hd_benchmark.ipynb -- training high-dimensional benchmark bairs by [W2] solver
  • notebooks/W2_train_images_benchmark.ipynb -- training images benchmark bairs by [W2] solver

Credits

Owner
Alexander
PhD Student (Computer Science) at Skolkovo University of Science and Technology (Moscow, Russia)
Alexander
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022