Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

Related tags

Deep LearningIC-Conv
Overview

IC-Conv

This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search.

Getting Started

Download ImageNet pre-trained checkpoints.

Extract the file to get the following directory tree

|-- README.md
|-- ckpt
|   |-- detection
|   |-- human_pose
|   |-- segmentation
|-- config
|-- model
|-- pattern_zoo

Easy Use

The current implementation is coupled to specific downstream tasks. OpenMMLab users can quickly use IC-Conv in the following simple ways.

from models import IC_ResNet
import torch
net = IC_ResNet(depth=50,pattern_path='pattern_zoo/detection/ic_r50_k9.json')
net.eval()
inputs = torch.rand(1, 3, 32, 32)
outputs = net.forward(inputs)

For 2d Human Pose Estimation using MMPose

  1. Copying the config files to the config path of mmpose, such as
cp config/human_pose/ic_res50_k13_coco_640x640.py your_mmpose_path/mmpose/configs/bottom_up/resnet/coco/ic_res50_k13_coco_640x640.py
  1. Copying the inception conv files to the model path of mmpose,
cp model/ic_conv2d.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_conv2d.py
cp model/ic_resnet.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_resnet.py
  1. Running it directly like MMPose.

Model Zoo

We provided the pre-trained weights of IC-ResNet-50, IC-ResNet-101and IC-ResNeXt-101 (32x4d) on ImageNet and the weights trained on specific tasks.

For users with limited computing power, you can directly reuse our provided IC-Conv and ImageNet pre-training weights for detection, segmentation, and 2d human pose estimation tasks on other datasets.

Attentions: The links in the tables below are relative paths. Therefore, you should clone the repository and download checkpoints.

Object Detection

Detector Backbone Lr AP dilation_pattern checkpoint
Faster-RCNN-FPN IC-R50 1x 38.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-R101 1x 41.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-X101-32x4d 1x 42.1 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 42.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.0 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 45.7 pattern ckpt/imagenet_retrain_ckpt

Instance Segmentation

Detector Backbone Lr box AP mask AP dilation_pattern checkpoint
Mask-RCNN-FPN IC-R50 1x 40.0 35.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-R101 1x 42.6 37.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-X101-32x4d 1x 43.4 38.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 43.4 36.8 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.7 38.7 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 46.4 39.1 pattern ckpt/imagenet_retrain_ckpt

2d Human Pose Estimation

We adjust the learning rate of resnet backbone in MMPose and get better baseline results. Please see the specific config files in config/human_pose/.

Results on COCO val2017 without multi-scale test
Backbone Input Size AP dilation_pattern checkpoint
R50(mmpose) 640x640 47.9 ~ ~
R50 640x640 51.0 ~ ~
IC-R50 640x640 62.2 pattern ckpt/imagenet_retrain_ckpt
R101 640x640 55.5 ~ ~
IC-R101 640x640 63.3 pattern ckpt/imagenet_retrain_ckpt
Results on COCO val2017 with multi-scale test. 3 default scales ([2, 1, 0.5]) are used
Backbone Input Size AP
R50(mmpose) 640x640 52.5
R50 640x640 55.8
IC-R50 640x640 65.8
R101 640x640 60.2
IC-R101 640x640 68.5

Acknowledgement

The human pose estimation experiments are built upon MMPose.

Citation

If our paper helps your research, please cite it in your publications:

@article{liu2020inception,
 title={Inception Convolution with Efficient Dilation Search},
 author={Liu, Jie and Li, Chuming and Liang, Feng and Lin, Chen and Sun, Ming and Yan, Junjie and Ouyang, Wanli and Xu, Dong},
 journal={arXiv preprint arXiv:2012.13587},
 year={2020}
}
Owner
Jie Liu
Jie Liu
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022