Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Overview

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin Dinu1,3, Philipp Renz1, Angela Bitto-Nemling1, Vihang Patil1, Sepp Hochreiter1, 2

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria
2 Institute of Advanced Research in Artificial Intelligence (IARAI)
3 Dynatrace Research


The paper is available on arxiv


Implementation

This repository contains implementations of BC, BVE, MCE, DQN, QR-DQN, REM, BCQ, CQL and CRR, used for our evaluation of Offline RL datasets. Implementation-wise, algorithms can in theory be used in the usual Online RL setting as well as Offline RL settings. Furthermore, utilities for offline dataset evaluation and plotting of results are contained.

Experiments are managed through experimental files (ex_01.py, ex_02.py, ...). While this is not a necessity, we created an experimental file for each of the six environments used to obtain our results, to more easily distribute experiments across multiple devices.

Dependencies

To reproduce all results we provide an environment.yml file to setup a conda environment with the required packages. Run the following command to create and activate the environment:

conda env create --file environment.yml
conda activate offline_rl
pip install -e .

Usage

To create datasets for Offline RL, each experimental file needs to be run by

python ex_XX.py --online

After this run has finished, datasets for Offline RL are created, which are then used for applying algorithms in the Offline RL setting. Offline experiments are started with

python ex_XX.py

Runtimes will be long, especially on MinAtar environments, which is why distribution across multiple machines is crucial in this step. To distribute across multiple machines, two further command line arguments are eligible, --run and --dataset. Depending on how many runs have been done to create datasets for Offline RL (five in the paper), one can select a specific version of the dataset with the first parameter. For the results in the paper, five different datasets are created (random, mixed, replay, noisy, expert), which can be selected by its number using the second parameter.

As an example, offline experiments using the fourth dataset creation run on the expert dataset is started with

python ex_XX.py --run 3 --dataset 4

or using the first dataset creation run on the replay dataset

python ex_XX.py --run 0 --dataset 2

Results

After all experiments are concluded, one has to combine the logged files and create the plots by executing

python source/plotting/join_csv_files.py
python source/plotting/create_plots.py

Furthermore, plots for the training curves can be created by executing

python source/plotting/learning_curves.py

Alternative visualisations of the main results, using parallel coordinates are available by executing

python source/plotting/parallel_coordinates.py

LICENSE

MIT LICENSE

Owner
Institute for Machine Learning, Johannes Kepler University Linz
Software of the Institute for Machine Learning, JKU Linz
Institute for Machine Learning, Johannes Kepler University Linz
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022