HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

Overview

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

[toc]

1. Introduction

This repository provides the code for our paper at TheWebConf 2022:

Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval. Jinpeng Wang, Bin Chen, Dongliang Liao, Ziyun Zeng, Gongfu Li, Shu-Tao Xia, Jin Xu. [arXiv].

Our proposed Hybrid Contrastive Quantization (HCQ) is the first quantization learning method for cross-view (e.g., text-to-video) retrieval, which learns both coarse-grained and fine-grained quantizations with transformers. Experiments on MSRVTT, LSMDC and ActivityNet Captions datasets demonstrate that it can achieve competitive performance with state-of-the-art non-compressed retrieval methods while showing high efficiency in storage and computation.

In the following, we will guide you how to use this repository step by step. 🤗

2. Preparation

git clone https://github.com/gimpong/WWW22-HCQ.git

2.1 Requirements

  • python 3.7.4
  • gensim 4.1.2
  • h5py 3.6.0
  • numpy 1.17.3
  • pandas 1.2.3
  • pytorch-warmup 0.0.4
  • scikit-learn 0.23.0
  • scipy 1.6.1
  • tensorboardX 2.4.1
  • torch 1.6.0+cu101
  • transformers 3.1.0
cd WWW22-HCQ
# Install the requirements
pip install -r requirements.txt

We conduct each training experiment on a single NVIDIA® Tesla® V100 GPU (32 GB).

2.2 Download the features

Before running the code, we need to download the datasets and arrange them in the "data" directory properly. We use the video features provided by the authors of MMT. These features can be downloaded from this page by running the following commands:

# Create and move to WWW22-HCQ/data directory
cd data
# Download the video features
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/MSRVTT.tar.gz
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/activity-net.tar.gz
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/LSMDC.tar.gz
# Extract the video features
tar -xvf MSRVTT.tar.gz
tar -xvf activity-net.tar.gz
tar -xvf LSMDC.tar.gz

3. Training and Evaluation

3.1 Training from scratch

Let us take "training HCQ on MSRVTT dataset ('1k-A' split)" as an example:

# working directory: WWW22-HCQ/
python -m train --config configs/HCQ_MSRVTT_1kA.json

Expected results:

MSRVTT_jsfusion_test:
 t2v_metrics/R1/final_eval: 25.9
 t2v_metrics/R5/final_eval: 54.8
 t2v_metrics/R10/final_eval: 69.0
 t2v_metrics/R50/final_eval: 88.8
 t2v_metrics/MedR/final_eval: 5.0
 t2v_metrics/MeanR/final_eval: 28.062
 t2v_metrics/geometric_mean_R1-R5-R10/final_eval: 46.09386629981193
 v2t_metrics/R1/final_eval: 26.3
 v2t_metrics/R5/final_eval: 57.0
 v2t_metrics/R10/final_eval: 70.1
 v2t_metrics/R50/final_eval: 90.0
 v2t_metrics/MedR/final_eval: 4.0
 v2t_metrics/MeanR/final_eval: 25.1535
 v2t_metrics/geometric_mean_R1-R5-R10/final_eval: 47.18995255588879

After training, a folder with the same name as the configuration json file (e.g., "HCQ_MSRVTT_1kA") will be generated under WWW22-HCQ/exps/, which contains the model checkpoints, logs, tensorboard files, and so on.

For reproducing other experiments, please see the following tables. You can just replace the config json path with another in the training command.

3.1.1 Main results of HCQ (reported in Table 1-3 in our paper)

Model Dataset (+split) Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCQ MSRVTT (1k-A) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt  25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
MSRVTT (1k-B) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt  22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
MSRVTT (Full) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt  15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
LSMDC HCQ_LSMDC.json HCQ_LSMDC.txt  14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
ActivityNet Captions HCQ_ActivityNet.json HCQ_ActivityNet.txt  22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56

3.1.2 Result of Hybrid Contrastive Transformer (HCT), Dual Transformer (DT) + DCMH, and DT + JPQ (reported in Table 4 in our paper)

Model Dataset (+split) Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCT MSRVTT (1k-A) HCT_MSRVTT_1kA.json HCT_MSRVTT_1kA.txt 27.80 58.00 70.00 89.50 4 26.79 48.33 27.30 57.80 72.10 90.60 4 24.38 48.46
MSRVTT (1k-B) HCT_MSRVTT_1kB.json HCT_MSRVTT_1kB.txt 25.70 53.70 67.30 88.30 5 31.09 45.29 24.70 55.50 68.70 88.80 4 25.54 45.50
MSRVTT (Full) HCT_MSRVTT_full.json HCT_MSRVTT_full.txt 16.76 41.87 55.79 82.44 8 44.33 33.95 21.64 50.57 63.88 87.66 5 29.56 41.19
LSMDC HCT_LSMDC.json HCT_LSMDC.txt 16.40 34.10 43.10 69.10 17 72.39 28.89 14.10 33.70 41.40 67.40 18 73.54 26.99
ActivityNet Captions HCT_ActivityNet.json HCT_ActivityNet.txt 23.12 54.95 71.14 92.64 5 24.82 44.88 22.94 55.81 70.84 92.29 4 25.35 44.93
DT+DCMH MSRVTT (1k-A) DCMH_MSRVTT_1kA.json DCMH_MSRVTT_1kA.txt 19.00 48.40 62.20 85.30 6 32.40 38.53 20.00 50.20 63.30 84.90 5.5 31.69 39.91
MSRVTT (1k-B) DCMH_MSRVTT_1kB.json DCMH_MSRVTT_1kB.txt 15.80 41.30 57.70 83.30 8 40.42 33.52 16.60 44.10 58.10 84.10 7 37.17 34.91
MSRVTT (Full) DCMH_MSRVTT_full.json DCMH_MSRVTT_full.txt 8.46 28.16 41.51 73.48 15.75 67.90 21.46 9.57 31.30 46.62 78.13 12 55.30 24.08
LSMDC DCMH_LSMDC.json DCMH_LSMDC.txt 10.00 25.80 36.00 66.30 22 75.84 21.02 9.60 25.80 36.40 65.40 22.75 78.37 20.81
ActivityNet Captions DCMH_ActivityNet.json DCMH_ActivityNet.txt 12.34 38.40 55.62 84.62 8.5 63.41 29.76 12.45 39.19 55.52 84.58 8.5 65.43 30.03
DT+JPQ MSRVTT (1k-A) JPQ_MSRVTT_1kA.json JPQ_MSRVTT_1kA.txt 18.90 46.80 60.80 87.90 6 29.12 37.75 18.20 47.40 63.20 87.80 6 26.63 37.92
MSRVTT (1k-B) JPQ_MSRVTT_1kB.json JPQ_MSRVTT_1kB.txt 14.90 42.50 57.70 86.90 7 33.05 33.18 15.30 43.50 59.10 88.30 7 27.79 34.01
MSRVTT (Full) JPQ_MSRVTT_full.json JPQ_MSRVTT_full.txt 9.30 30.00 43.44 77.49 14 50.00 22.97 11.44 36.29 51.30 82.84 10 37.00 27.72
LSMDC JPQ_LSMDC.json JPQ_LSMDC.txt 9.50 23.40 34.30 63.10 25 80.27 19.68 7.80 22.80 32.80 62.50 27 79.98 18.00
ActivityNet Captions JPQ_ActivityNet.json JPQ_ActivityNet.txt 17.10 46.43 62.38 90.05 6 28.09 36.73 17.67 46.88 62.94 90.14 6 28.21 37.36

3.1.3 Results of HCQ under different hyper-parameters (reported in Figure 6 in our paper)

Experimental subject Dataset (+split) Setting Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
L: the number of active cluster(s) in GhostVLAD MSRVTT (1k-A) 1 HCQ_MSRVTT_1kA_L1.json HCQ_MSRVTT_1kA_L1.txt 25.10 54.10 67.30 89.10 5 28.21 45.04 22.70 55.10 67.90 89.90 4 25.35 43.96
3 HCQ_MSRVTT_1kA_L3.json HCQ_MSRVTT_1kA_L3.txt 25.70 52.90 66.90 89.30 5 28.39 44.97 26.70 55.00 68.50 90.50 4 24.20 46.51
7 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
15 HCQ_MSRVTT_1kA_L15.json HCQ_MSRVTT_1kA_L15.txt 24.20 54.40 68.10 88.70 5 27.15 44.76 23.60 55.00 69.40 90.60 4 22.79 44.83
31 HCQ_MSRVTT_1kA_L31.json HCQ_MSRVTT_1kA_L31.txt 26.20 54.50 67.90 88.00 5 27.57 45.94 25.00 55.60 69.10 90.00 4 24.38 45.80
MSRVTT (1k-B) 1 HCQ_MSRVTT_1kB_L1.json HCQ_MSRVTT_1kB_L1.txt 22.40 51.70 64.10 87.50 5 30.79 42.03 21.90 52.50 65.90 88.10 5 27.49 42.32
3 HCQ_MSRVTT_1kB_L3.json HCQ_MSRVTT_1kB_L3.txt 23.10 50.60 65.40 87.90 5 31.43 42.44 22.90 51.70 66.50 88.30 5 26.82 42.86
7 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
15 HCQ_MSRVTT_1kB_L15.json HCQ_MSRVTT_1kB_L15.txt 22.20 51.50 64.30 87.20 5 30.98 41.89 22.00 52.40 65.50 87.90 5 26.35 42.27
31 HCQ_MSRVTT_1kB_L31.json HCQ_MSRVTT_1kB_L31.txt 23.30 50.40 64.30 86.80 5 34.97 42.27 22.70 53.50 65.20 88.10 5 29.55 42.94
MSRVTT (Full) 1 HCQ_MSRVTT_full_L1.json HCQ_MSRVTT_full_L1.txt 14.31 38.63 52.24 80.94 10 44.35 30.68 17.32 44.98 59.60 86.89 7 31.44 35.95
3 HCQ_MSRVTT_full_L3.json HCQ_MSRVTT_full_L3.txt 14.45 39.16 51.84 80.80 10 45.37 30.84 17.56 46.19 60.37 86.82 6 31.24 36.58
7 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
15 HCQ_MSRVTT_full_L15.json HCQ_MSRVTT_full_L15.txt 14.01 37.53 51.47 81.74 10 41.04 30.02 16.19 44.08 59.80 86.99 7 29.87 34.94
31 HCQ_MSRVTT_full_L31.json HCQ_MSRVTT_full_L31.txt 14.48 38.56 52.64 81.61 9 43.41 30.86 18.09 45.99 59.67 87.22 7 30.54 36.75
LSMDC 1 HCQ_LSMDC_L1.json HCQ_LSMDC_L1.txt 14.40 31.50 42.50 68.50 17 73.09 26.81 13.00 30.60 40.50 68.10 19 71.16 25.26
3 HCQ_LSMDC_L3.json HCQ_LSMDC_L3.txt 14.00 33.80 44.10 68.30 17 73.91 27.53 12.90 32.80 42.80 68.50 17 71.74 26.26
7 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
15 HCQ_LSMDC_L15.json HCQ_LSMDC_L15.txt 14.10 32.60 41.90 69.80 17 71.28 26.81 13.10 31.40 40.70 68.30 18 71.21 25.58
31 HCQ_LSMDC_L31.json HCQ_LSMDC_L31.txt 12.80 31.90 41.90 68.30 17 72.03 25.77 12.50 32.20 42.00 67.20 17 72.26 25.66
ActivityNet Captions 1 HCQ_ActivityNet_L1.json HCQ_ActivityNet_L1.txt 19.77 50.54 65.77 89.06 5 33.26 40.35 20.03 51.33 66.36 89.40 5 32.14 40.86
3 HCQ_ActivityNet_L3.json HCQ_ActivityNet_L3.txt 20.95 52.21 68.35 90.54 5 30.22 42.13 20.72 53.10 68.70 90.50 5 29.18 42.28
7 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
15 HCQ_ActivityNet_L15.json HCQ_ActivityNet_L15.txt 21.33 52.15 68.07 90.16 5 30.00 42.31 22.07 52.92 68.31 90.46 5 29.26 43.05
31 HCQ_ActivityNet_L31.json HCQ_ActivityNet_L31.txt 20.56 52.45 69.07 89.91 5 31.39 42.07 21.66 52.96 68.60 90.81 5 29.67 42.85
M: the number of sub-codebooks in each quantization module MSRVTT (1k-A) 8 HCQ_MSRVTT_1kA_M8.json HCQ_MSRVTT_1kA_M8.txt 23.00 52.00 65.00 87.00 5 32.93 42.68 21.40 52.40 65.50 88.20 5 30.19 41.88
16 HCQ_MSRVTT_1kA_M16.json HCQ_MSRVTT_1kA_M16.txt 23.40 53.40 68.10 88.00 5 30.89 43.98 23.00 55.30 68.60 89.60 4 26.62 44.35
32 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
64 HCQ_MSRVTT_1kA_M64.json HCQ_MSRVTT_1kA_M64.txt 27.20 56.80 69.10 89.30 4 26.93 47.44 26.10 58.10 71.40 90.70 4 23.82 47.66
MSRVTT (1k-B) 8 HCQ_MSRVTT_1kB_M8.json HCQ_MSRVTT_1kB_M8.txt 20.10 47.00 60.60 84.10 6.75 37.97 38.54 18.90 47.90 63.10 86.40 6 36.00 38.51
16 HCQ_MSRVTT_1kB_M16.json HCQ_MSRVTT_1kB_M16.txt 22.50 49.50 62.70 85.90 6 33.82 41.18 21.10 52.10 65.60 87.10 5 32.43 41.62
32 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
64 HCQ_MSRVTT_1kB_M64.json HCQ_MSRVTT_1kB_M64.txt 24.50 51.60 66.20 87.70 5 31.31 43.74 23.60 54.30 67.40 88.80 4.75 27.56 44.20
MSRVTT (Full) 8 HCQ_MSRVTT_full_M8.json HCQ_MSRVTT_full_M8.txt 11.61 33.44 46.86 75.82 12 62.06 26.30 11.91 36.99 51.77 82.31 10 44.63 28.36
16 HCQ_MSRVTT_full_M16.json HCQ_MSRVTT_full_M16.txt 12.81 36.45 50.17 79.06 10 52.58 28.61 14.55 41.07 55.85 84.75 8 37.39 32.20
32 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
64 HCQ_MSRVTT_full_M64.json HCQ_MSRVTT_full_M64.txt 16.02 40.97 54.25 83.01 8 40.48 32.90 19.16 48.26 62.94 88.70 6 26.65 38.76
LSMDC 8 HCQ_LSMDC_M8.json HCQ_LSMDC_M8.txt 12.60 29.00 38.60 64.30 22 84.53 24.16 10.40 29.20 39.10 64.20 21 78.32 22.81
16 HCQ_LSMDC_M16.json HCQ_LSMDC_M16.txt 13.20 31.10 39.40 66.50 19 79.15 25.29 12.70 31.60 39.90 65.30 21 77.42 25.21
32 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
64 HCQ_LSMDC_M64.json HCQ_LSMDC_M64.txt 14.80 33.00 43.60 69.10 16 72.80 27.72 14.10 32.30 40.80 67.40 19 72.64 26.49
ActivityNet Captions 8 HCQ_ActivityNet_M8.json HCQ_ActivityNet_M8.txt 18.77 48.44 65.08 88.75 6 39.86 38.97 18.63 48.69 65.24 89.30 6 38.20 38.97
16 HCQ_ActivityNet_M16.json HCQ_ActivityNet_M16.txt 20.56 51.86 67.93 89.89 5 35.07 41.68 20.68 52.10 68.09 90.44 5 32.72 41.87
32 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
64 HCQ_ActivityNet_M64.json HCQ_ActivityNet_M64.txt 22.96 54.59 70.80 91.80 5 26.29 44.60 23.61 55.28 70.80 92.03 4 25.74 45.21
Batch size MSRVTT (1k-A) 16 HCQ_MSRVTT_1kA_bs16.json HCQ_MSRVTT_1kA_bs16.txt 24.20 53.40 67.40 89.90 5 25.86 44.33 23.60 54.10 67.60 89.60 4 22.96 44.19
32 HCQ_MSRVTT_1kA_bs32.json HCQ_MSRVTT_1kA_bs32.txt 24.20 54.00 67.20 89.90 5 27.50 44.45 24.00 54.30 66.90 90.10 4 25.09 44.34
64 HCQ_MSRVTT_1kA_bs64.json HCQ_MSRVTT_1kA_bs64.txt 26.20 55.90 67.90 88.70 4 26.67 46.33 25.50 55.80 69.00 89.90 4 23.37 46.13
128 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
256 HCQ_MSRVTT_1kA_bs256.json HCQ_MSRVTT_1kA_bs256.txt 25.50 55.30 67.50 89.20 4 26.80 45.66 26.00 55.80 68.70 90.50 4 23.47 46.36
MSRVTT (1k-B) 16 HCQ_MSRVTT_1kB_bs16.json HCQ_MSRVTT_1kB_bs16.txt 22.00 49.40 64.50 87.60 6 31.45 41.23 18.50 51.80 66.20 89.60 5 26.30 39.88
32 HCQ_MSRVTT_1kB_bs32.json HCQ_MSRVTT_1kB_bs32.txt 22.60 49.20 65.10 87.10 6 32.03 41.68 21.40 52.30 65.90 88.20 5 28.20 41.94
64 HCQ_MSRVTT_1kB_bs64.json HCQ_MSRVTT_1kB_bs64.txt 23.60 50.70 64.60 86.60 5 33.26 42.60 21.10 51.60 64.60 89.00 5 28.00 41.28
128 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
256 HCQ_MSRVTT_1kB_bs256.json HCQ_MSRVTT_1kB_bs256.txt 22.50 50.20 63.80 87.00 5 30.96 41.61 21.30 52.40 65.90 88.30 5 27.50 41.90
MSRVTT (Full) 16 HCQ_MSRVTT_full_bs16.json HCQ_MSRVTT_full_bs16.txt 13.08 37.96 52.91 82.04 9 41.76 29.72 15.95 42.44 57.59 86.09 8 31.76 33.91
32 HCQ_MSRVTT_full_bs32.json HCQ_MSRVTT_full_bs32.txt 13.75 38.39 52.37 80.80 10 45.51 30.24 16.39 44.58 58.86 86.29 7 32.54 35.04
64 HCQ_MSRVTT_full_bs64.json HCQ_MSRVTT_full_bs64.txt 14.65 39.20 52.98 82.27 9 44.13 31.22 17.69 46.59 61.10 87.83 6 31.56 36.93
128 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
256 HCQ_MSRVTT_full_bs256.json HCQ_MSRVTT_full_bs256.txt 14.21 39.06 52.47 82.81 9 40.74 30.77 16.92 46.15 59.70 87.63 7 28.24 35.99
LSMDC 16 HCQ_LSMDC_bs16.json HCQ_LSMDC_bs16.txt 12.30 29.70 39.40 65.30 21 82.64 24.32 10.70 28.30 38.90 65.60 23 80.80 22.75
32 HCQ_LSMDC_bs32.json HCQ_LSMDC_bs32.txt 12.30 30.00 38.70 66.30 20 79.95 24.26 12.10 28.70 39.10 63.50 23 80.79 23.86
64 HCQ_LSMDC_bs64.json HCQ_LSMDC_bs64.txt 13.40 31.90 41.00 66.20 17 75.98 25.98 13.40 31.50 40.00 66.20 20 73.14 25.65
128 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
256 HCQ_LSMDC_bs256.json HCQ_LSMDC_bs256.txt 14.30 34.80 43.60 69.30 16 74.04 27.89 14.30 33.50 42.50 67.70 16 71.84 27.31
ActivityNet Captions 16 HCQ_ActivityNet_bs16.json HCQ_ActivityNet_bs16.txt 21.31 52.55 70.59 92.19 5 27.31 42.92 22.25 53.18 70.41 92.33 5 26.57 43.68
32 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
64 HCQ_ActivityNet_bs64.json HCQ_ActivityNet_bs64.txt 20.62 51.60 66.91 88.94 5 33.61 41.45 20.58 51.64 67.76 89.40 5 31.52 41.61
128 HCQ_ActivityNet_bs128.json HCQ_ActivityNet_bs128.txt 19.36 48.61 64.86 88.41 6 35.38 39.37 19.22 49.68 66.04 89.12 6 33.15 39.80
Ï„: the temperature factor in contrastive learning loss (Eq.(13)) MSRVTT (1k-A) 0.03 HCQ_MSRVTT_1kA_t0.03.json HCQ_MSRVTT_1kA_t0.03.txt 24.90 56.50 68.80 88.80 4 26.95 45.91 25.10 53.90 69.10 89.70 4 24.91 45.39
0.05 HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
0..07 HCQ_MSRVTT_1kA_t0.07.json HCQ_MSRVTT_1kA_t0.07.txt 25.40 52.80 67.50 88.60 5 30.40 44.90 25.90 57.00 68.00 90.00 4 27.78 46.48
0.1 HCQ_MSRVTT_1kA_t0.1.json HCQ_MSRVTT_1kA_t0.1.txt 23.90 52.10 66.20 87.10 5 32.74 43.52 22.50 54.00 67.10 87.70 5 31.09 43.36
0.12 HCQ_MSRVTT_1kA_t0.12.json HCQ_MSRVTT_1kA_t0.12.txt 22.60 49.60 65.00 87.90 6 34.53 41.77 21.20 50.80 65.10 87.30 5 33.46 41.23
0.15 HCQ_MSRVTT_1kA_t0.15.json HCQ_MSRVTT_1kA_t0.15.txt 18.20 44.50 60.20 86.80 7 36.74 36.53 16.50 46.80 61.40 85.80 6 35.20 36.19
MSRVTT (1k-B) 0.03 HCQ_MSRVTT_1kB_t0.03.json HCQ_MSRVTT_1kB_t0.03.txt 23.10 51.90 63.40 88.20 5 30.89 42.36 22.90 51.70 65.60 88.10 5 25.72 42.67
0.05 HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
0..07 HCQ_MSRVTT_1kB_t0.07.json HCQ_MSRVTT_1kB_t0.07.txt 23.90 49.90 63.50 86.70 6 34.78 42.31 22.70 52.10 65.30 87.40 5 32.91 42.59
0.1 HCQ_MSRVTT_1kB_t0.1.json HCQ_MSRVTT_1kB_t0.1.txt 19.90 50.70 63.80 86.80 5 35.51 40.08 19.90 50.70 65.00 87.20 5 34.81 40.33
0.12 HCQ_MSRVTT_1kB_t0.12.json HCQ_MSRVTT_1kB_t0.12.txt 19.00 46.30 61.00 86.40 7 35.89 37.72 18.30 48.20 61.30 86.60 6 35.56 37.81
0.15 HCQ_MSRVTT_1kB_t0.15.json HCQ_MSRVTT_1kB_t0.15.txt 15.60 43.20 56.70 84.50 8 40.02 33.68 14.70 44.20 57.90 85.80 7 39.38 33.51
MSRVTT (Full) 0.03 HCQ_MSRVTT_full_t0.03.json HCQ_MSRVTT_full_t0.03.txt 14.11 38.29 50.77 80.00 10 45.90 30.16 16.32 45.45 59.80 86.86 7 31.64 35.40
0.05 HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
0..07 HCQ_MSRVTT_full_t0.07.json HCQ_MSRVTT_full_t0.07.txt 14.15 37.89 51.17 81.30 10 46.22 30.16 16.72 43.18 58.09 85.95 8 33.70 34.75
0.1 HCQ_MSRVTT_full_t0.1.json HCQ_MSRVTT_full_t0.1.txt 13.58 36.56 49.06 80.43 11 49.80 28.99 14.35 39.13 53.65 84.15 9 39.70 31.11
0.12 HCQ_MSRVTT_full_t0.12.json HCQ_MSRVTT_full_t0.12.txt 12.31 34.25 49.13 79.50 11 50.45 27.46 12.24 35.65 50.64 82.98 10 44.35 28.06
0.15 HCQ_MSRVTT_full_t0.15.json HCQ_MSRVTT_full_t0.15.txt 10.10 30.64 43.88 76.79 14 55.40 23.86 9.16 29.90 45.69 79.00 13 53.01 23.22
LSMDC 0.03 HCQ_LSMDC_t0.03.json HCQ_LSMDC_t0.03.txt 14.90 32.00 42.50 66.20 18 76.14 27.26 12.90 31.80 40.80 66.80 20 72.31 25.58
0.05 HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
0..07 HCQ_LSMDC_t0.07.json HCQ_LSMDC_t0.07.txt 12.80 32.30 43.40 67.70 17 75.92 26.18 12.80 32.70 42.90 67.30 17 76.30 26.19
0.1 HCQ_LSMDC_t0.1.json HCQ_LSMDC_t0.1.txt 12.50 30.10 40.80 66.90 18 81.02 24.85 11.80 29.00 40.30 64.20 19 82.29 23.98
0.12 HCQ_LSMDC_t0.12.json HCQ_LSMDC_t0.12.txt 12.00 28.10 38.80 66.40 20 81.93 23.56 11.90 27.60 39.60 64.80 20 84.15 23.52
0.15 HCQ_LSMDC_t0.15.json HCQ_LSMDC_t0.15.txt 10.70 26.10 36.00 64.90 23 82.81 21.58 9.10 24.00 35.10 62.80 25 88.27 19.72
ActivityNet Captions 0.03 HCQ_ActivityNet_t0.03.json HCQ_ActivityNet_t0.03.txt 22.15 52.78 68.58 91.38 5 26.42 43.12 21.74 52.47 68.70 91.38 5 26.65 42.79
0.05 HCQ_ActivityNet.json HCQ_ActivityNet.txt 21.96 53.30 68.99 90.89 5 29.67 43.23 21.94 52.94 69.21 90.69 5 29.12 43.16
0..07 HCQ_ActivityNet_t0.07.json HCQ_ActivityNet_t0.07.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
0.1 HCQ_ActivityNet_t0.1.json HCQ_ActivityNet_t0.1.txt 22.11 52.08 68.23 91.34 5 28.34 42.83 21.72 53.33 69.60 91.60 5 27.19 43.20
0.12 HCQ_ActivityNet_t0.12.json HCQ_ActivityNet_t0.12.txt 19.20 50.52 67.99 91.95 5 30.12 40.40 20.09 51.66 68.23 91.89 5 29.16 41.37
0.15 HCQ_ActivityNet_t0.15.json HCQ_ActivityNet_t0.15.txt 17.00 47.14 65.49 91.42 6 31.43 37.44 18.59 48.81 65.30 91.84 6 32.65 38.99

3.1.4 Results of HCQ with different kinds of text encoders ("1k-A" split) (reported in Table 5 in our paper)

Model Text Encoder Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCQ bert-base (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
BERT-large HCQ_MSRVTT_1kA_bert-large.json HCQ_MSRVTT_1kA_bert-large.txt 27.40 57.70 70.70 89.60 4 27.09 48.17 26.20 59.00 71.80 89.50 4 25.47 48.06
DistilBERT-base HCQ_MSRVTT_1kA_distilbert-base.json HCQ_MSRVTT_1kA_distilbert-base.txt 25.40 54.20 67.30 89.80 4 27.00 45.25 26.30 56.40 69.00 90.10 4 24.22 46.78
RoBERTa-base HCQ_MSRVTT_1kA_roberta-base.json HCQ_MSRVTT_1kA_roberta-base.txt 25.50 54.70 67.80 89.20 5 27.04 45.56 24.50 55.00 69.00 90.20 4 23.80 45.30
RoBERTa-large HCQ_MSRVTT_1kA_roberta-large.json HCQ_MSRVTT_1kA_roberta-large.txt 28.00 55.40 68.50 88.10 4 30.67 47.36 27.00 59.00 68.40 88.50 4 27.41 47.76
XLNet-base HCQ_MSRVTT_1kA_xlnet-base.json HCQ_MSRVTT_1kA_xlnet-base.txt 25.80 56.20 68.70 87.50 5 28.35 46.36 24.60 55.50 69.00 88.40 4 25.59 45.50
XLNet-large HCQ_MSRVTT_1kA_xlnet-large.json HCQ_MSRVTT_1kA_xlnet-large.txt 25.00 53.00 66.60 88.20 5 27.59 44.52 25.30 54.50 68.00 89.10 4 23.69 45.43

If you are doing experiments on a platform with enough RAM and want to accelerate the training, you can load the whole dataset in RAM by the following modification:

# WWW22-HCQ/base/base_dataset.py:L170
               load_in_ram=True, # change from 'False' to 'True'

3.2 Evaluation from checkpoint

We can evaluate the model from the checkpoint without re-training. The evaluation command:

python -m train --config configs/HCQ_MSRVTT_1kA.json --only_eval --load_checkpoint HCQ_MSRVTT_1kA.pth

We provide the checkpoint of HCQ_MSRVTT_1kA.json as an example, you can download this file (~1.6G) from the Google Drive and put it in the working directory (WWW22-HCQ/).

3.3 Evaluation for post-compression methods

Take the evaluation on MSRVTT dataset ("1k-A" split) as an example. First, we need to train an HCT.

# working directory: WWW22-HCQ/
python -m train --config configs/HCT_MSRVTT_1kA.json

Then, run the get_embed.py and pass the path of the HCT checkpoint to the script:

python -m get_embed configs/HCT_MSRVTT_1kA.json --only_eval --load_checkpoint HCT_MSRVTT_1kA/trained_model.pth

After that, we will get the embedding file embeddings.h5 under WWW22-HCQ/exps/HCT_MSRVTT_1kA/. Run the compress_embed.py and get the results:

# compress embeddings with LSH
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type LSH
# compress embeddings with PQ
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type PQ
# compress embeddings with OPQ
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type OPQ

3. References

If you find this code useful or use the toolkit in your work, please consider citing:

@inproceedings{wang22hcq,
  author={Wang, Jinpeng and Chen, Bin and Liao, Dongliang and Zeng, Ziyun and Li, Gongfu and Shu-Tao, Xia and Xu, Jin},
  title={Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval},
  booktitle={Proceedings of the Web Conference 2022},
  doi={10.1145/3485447.3512022}
}

4. Acknowledgements

Our code is based on the implementation of nanopq, Multi-Modal Transformer, Collaborative Experts, Transformers and Mixture of Embedding Experts.

5. Contact

If you have any question, you can raise an issue or email Jinpeng Wang ([email protected]). We will reply you soon.

Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022