StarGAN-ZSVC: Unofficial PyTorch Implementation

Overview

StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

One of the StarGAN-ZSVC advantages is that it works on zero-shot settings and can be trained on unparallel audio data (different audio content by different speakers). Also, the model inference time is real-time or faster.

Disclaimer: I implement this repository for educational purpose only. All credits go to the original authors. Also, it may contains different details as described in the paper. If there is a room for improvement, please feel free to contact me.

Set up

git clone [email protected]:Top34051/stargan-zsvc.git
cd stargan-zsvc
conda env create -f environment.yml
conda activate stargan-zsvc

Usage

Voice conversion

Given two audio files, source.wav and target.wav, you can generate a new audio file with the same speaking content as in source.wav spoken by the speaker in target.wav as follow.

First, load my pretrained model weights (best.pt) and put it in checkpoints folder.

Next, we need to embed both speaker identity.

python embed.py --path path_to_source.wav --name src
python embed.py --path path_to_target.wav --name trg

This will generate src.npy and trg.npy, the source and target speaker embeddings.

To perform voice conversion,

python convert.py \
  --audio_path path_to_source.wav \
  --src_id src \
  --trg_id trg  

That's it! 🎉 You can check out the result at results/output.wav.

Training

To train the model, you have to download and preprocess the dataset first. Since your data might be different from mine, I recommend you to read and fix the logic I used in preprocess.py (the dataset I used is here).

The fixed size utterances from each speaker will be extracted, resampled to 22,050 Hz, and converted to Mel-spectrogram with window and hop length of size 1024 and 256. This will preprocess the speaker embeddings as well, so that you don't have to embed them one-by-one.

The processed dataset will look like this

data/
    train/
        spk1.npy # contains N samples of (80, 128) mel-spectrogram
        spk2.npy
        ...
    test/
        spk1.npy
        spk2.npy
        ...
        
embeddings/
    spk1.npy # a (256, ) speaker embedding vector
    spk2.npy
    ...

You can customize some of the training hyperparameters or select resuming checkpoint in config.json. Finally, train the models by

python main.py \ 
  --config_file config.json 
  --num_epoch 3000

You will now see new checkpoint pops up in the checkpoints folder.

Please check out my code and modify them for improvement. Have fun training! ✌️

Owner
Jirayu Burapacheep
Deep learning enthusiast; Undergrad in Computer and Data Science at UW-Madison
Jirayu Burapacheep
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022