PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

Related tags

Deep LearningSENTRY
Overview

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation

Viraj Prabhu, Shivam Khare, Deeksha Kartik, Judy Hoffman

Many existing approaches for unsupervised domain adaptation (UDA) focus on adapting under only data distribution shift and offer limited success under additional cross-domain label distribution shift. Recent work based on self-training using target pseudolabels has shown promise, but on challenging shifts pseudolabels may be highly unreliable and using them for self-training may cause error accumulation and domain misalignment. We propose Selective Entropy Optimization via Committee Consistency (SENTRY), a UDA algorithm that judges the reliability of a target instance based on its predictive consistency under a committee of random image transformations. Our algorithm then selectively minimizes predictive entropy to increase confidence on highly consistent target instances, while maximizing predictive entropy to reduce confidence on highly inconsistent ones. In combination with pseudolabel-based approximate target class balancing, our approach leads to significant improvements over the state-of-the-art on 27/31 domain shifts from standard UDA benchmarks as well as benchmarks designed to stress-test adaptation under label distribution shift.

method

Table of Contents

Setup and Dependencies

  1. Create an anaconda environment with Python 3.6: conda create -n sentry python=3.6.8 and activate: conda activate sentry
  2. Navigate to the code directory: cd code/
  3. Install dependencies: pip install -r requirements.txt

And you're all set up!

Usage

Download data

Data for SVHN->MNIST is downloaded automatically via PyTorch. Data for other benchmarks can be downloaded from the following links. The splits used for our experiments are already included in the data/ folder):

  1. DomainNet
  2. OfficeHome
  3. VisDA2017 (only train and validation needed)

Pretrained checkpoints

To reproduce numbers reported in the paper, we include a a few pretrained checkpoints. We include checkpoints (source and adapted) for SVHN to MNIST (DIGITS) in the checkpoints directory. Source and adapted checkpoints for Clipart to Sketch adaptation (from DomainNet) and Real_World to Product adaptation (from OfficeHome RS-UT) can be downloaded from this link, and should be saved to the checkpoints/source and checkpoints/SENTRY directory as appropriate.

Train and adapt model

  • Natural label distribution shift: Adapt a model from to for a given (where benchmark may be DomainNet, OfficeHome, VisDA, or DIGITS), as follows:
python train.py --id <experiment_id> \
                --source <source> \
                --target <target> \
                --img_dir <image_directory> \
                --LDS_type <LDS_type> \
                --load_from_cfg True \
                --cfg_file 'config/<benchmark>/<cfg_file>.yml' \
                --use_cuda True

SENTRY hyperparameters are provided via a sentry.yml config file in the corresponding config/<benchmark> folder (On DIGITS, we also provide a config for baseline adaptation via DANN). The list of valid source/target domains per-benchmark are:

  • DomainNet: real, clipart, sketch, painting
  • OfficeHome_RS_UT: Real_World, Clipart, Product
  • OfficeHome: Real_World, Clipart, Product, Art
  • VisDA2017: visda_train, visda_test
  • DIGITS: Only svhn (source) to mnist (target) adaptation is currently supported.

Pass in the path to the parent folder containing dataset images via the --img_dir <name_of_directory> flag (eg. --img_dir '~/data/DomainNet'). Pass in the label distribution shift type via the --LDS_type flag: For DomainNet, OfficeHome (standard), and VisDA2017, pass in --LDS_type 'natural' (default). For OfficeHome RS-UT, pass in --LDS_type 'RS_UT'. For DIGITS, pass in --LDS_type as one of IF1, IF20, IF50, or IF100, to load a manually long-tailed target training split with a given imbalance factor (IF), as described in Table 4 of the paper.

To load a pretrained DA checkpoint instead of training your own, additionally pass --load_da True and --id <benchmark_name> to the script above. Finally, the training script will log performance metrics to the console (average and aggregate accuracy), and additionally plot and save some per-class performance statistics to the results/ folder.

Note: By default this code runs on GPU. To run on CPU pass: --use_cuda False

Reference

If you found this code useful, please consider citing:

@article{prabhu2020sentry
   author = {Prabhu, Viraj and Khare, Shivam and Kartik, Deeksha and Hoffman, Judy},
   title = {SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation},
   year = {2020},
   journal = {arXiv preprint: 2012.11460},
}

Acknowledgements

We would like to thank the developers of PyTorch for building an excellent framework, in addition to the numerous contributors to all the open-source packages we use.

License

MIT

The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022