VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Overview

VID-Fusion

VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Authors: Ziming Ding , Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao from the ZJU FAST Lab.

0. Overview

VID-Fusion is a work to estimate odometry and external force simultaneously by a tightly coupled Visual-Inertial-Dynamics state estimator for multirotors. Just like VIMO, we formulate a new factor in the optimization-based visual-inertial odometry system VINS-Mono. But we compare the dynamics model with the imu measurements to observe the external force and formulate the external force preintegration like imu preintegration. So, the thrust and external force can be added into the classical VIO system such as VINS-Mono as a new factor.

We present:

  • An external force preintegration term for back-end optimization.
  • A complete, robust, tightly-coupled Visual-Inertial-Dynamics state estimator.
  • Demonstration of robust and accurate external force and pose estimation.

Simultaneously estimating the external force and odometry within a sliding window.

Related Paper: VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation, Ziming Ding, Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao, ICRA 2021.

Video Links: bilibili or Youtube.

1. Prerequisites

Our software is developed and only tested in Ubuntu 16.04, ROS Kinetic (ROS Installation), OpenCV 3.3.1.

Ceres Solver (Ceres Installation) is needed.

2. Build on ROS

cd your_catkin_ws/src
git clone [email protected]:ZJU-FAST-Lab/VID-Fusion.git
cd ..
catkin_make  --pkg quadrotor_msgs  # pre-build msg
catkin_make

3. Run in vid-dataset

cd your_catkin_ws
source ~/catkin_ws/devel/setup.bash
roslaunch vid_estimator vid_realworld.launch
roslaunch benchmark_publisher publish.launch #(option)
rosbag play YOUR_PATH_TO_DATASET

We provide the experiment data for testing, in which the vid-experiment-dataset is in ros bag type. The dataset provides two kinds of scenarios: tarj8_with_gt and line_with_force_gt.

  • tarj8_with_gt is a dataset with odometry groundtruth. The drone flys with a payload.

  • line_with_force_gt is a dataset with external force groundtruth. The drone connects a force sensor via a elastic rope.

A new visual-inertial-dynamics dataset with richer scenarios is provided in VID-Dataset.

The drone information should be provided in VID-Fusion/config/experiments/drone.yaml. It is noticed that you should use the proper parameter of the drone such as the mass and the thrust_coefficient, according to the related bag file.

As for the benchmark comparison, we naively edit the benchmark_publisher from VINS-Mono to compare the estimated path, and add a external force visualization about the estimated force and the ground truth force. The ground truth data is in VID-Fusion/benchmark_publisher/data. You should switch path or force comparison by cur_kind in publish.launch (0 for path comparison and 1 for force comparison).

As for model identification, we collect the hovering data for identification. For the two data bags, tarj8_with_gt and line_with_force_gt, we also provide the hovering data for thrust_coefficient identification. After system identification, you should copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

roslaunch system_identification system_identify.launch 
rosbag play YOUR_PATH_TO_DATASET
#copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

The external force is the resultant force except for rotor thrust and aircraft gravity. You can set force_wo_rotor_drag as 1 in config file to subtract the rotor drag force from the estimated force. And the related drag coefficient k_d_x and k_d_y should be given.

4. Acknowledgements

We replace the model preintegration and dynamics factor from VIMO, and formulate the proposed dynamics and external force factor atop the source code of VIMO and VINS-Mono. The ceres solver is used for back-end non-linear optimization, and DBoW2 for loop detection, and a generic camera model. The monocular initialization, online extrinsic calibration, failure detection and recovery, loop detection, and global pose graph optimization, map merge, pose graph reuse, online temporal calibration, rolling shutter support are also from VINS-Mono.

5. Licence

The source code is released under GPLv3 license.

6. Maintaince

For any technical issues, please contact Ziming Ding ([email protected]) or Fei GAO ([email protected]).

For commercial inquiries, please contact Fei GAO ([email protected]).

Owner
ZJU FAST Lab
ZJU FAST Lab
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022