Motion Reconstruction Code and Data for Skills from Videos (SFV)

Overview

Motion Reconstruction Code and Data for Skills from Videos (SFV)

This repo contains the data and the code for motion reconstruction component of the SFV paper:

SFV: Reinforcement Learning of Physical Skills from Videos
Transactions on Graphics (Proc. ACM SIGGRAPH Asia 2018)
Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, Sergey Levine
University of California, Berkeley

Project Page

Teaser Image

Data

The data for the video can be found in this link.
It contains the:

  • Input videos
  • Intermediate 2D OpenPose, tracks, and HMR outputs
  • Result video of before and after motion reconstruction
  • Output of motion reconstruction in bvh used to train the character

See the README in the tar file for more details.

Requirements

  • TensorFlow
  • SMPL
  • Have the same models/ structure as in HMR (you need the trained models and neutral_smpl_with_cocoplus_reg.pkl)

Rotation augmented models

This repo uses fine-tuned models for OpenPose and HMR with rotation augmentation. The models used can be found here: ft-OpenPose, ft-HMR

Steps to run:

  1. python -m run_openpose

  2. python -m refine_video

I recommend starting with the preprocessed data that's packaged with the above link, and start from python -m refine_video. Then run step 1 for your own video.

Comments

Note this repo is more of a research code demo compared to my other project code releases. It's also slightly dated. I'm putting this out there in case this is useful for others. You may need to fix some quirks.

Pull requests/contributions welcome!

License

This particular repo is under BSD but please follow the license agreement for tools that I build on such as SMPL and OpenPose.

June 28 2019.

In this repo, motion reconstruction smoothes HMR output. We recently released the demo for Human Mesh and Motion Recovery (HMMR), which will give you smoother outputs. You can apply motion reconstrution on top of the HMMR outputs, which will be a better starting point. This would probably be the best combination of the tools out there today.

I'm also using 2D pose from OpenPose here and have my own hacky tracking code. However there are more recent tools such as AlphaPose and PoseFlow that will compute the tracklet for you. (We use this in the HMMR codebase).

Fitting the HMMR output to DensePose output will be another simple loss function to add to the motion reconstruction to get a good 3D body fit to a video.

All of these would be a good starter project ;)

Another practical improvements that should be made is that this uses OpenDR renderer to render the results, which is slow and takes up most of the run time. In HMMR we use (the pytorch NMR)[https://github.com/daniilidis-group/neural_renderer] to render the results. The same logic can be adapted here.

Citation

If you use this code for your research, please consider citing:

@article{
	2018-TOG-SFV,
	author = {Peng, Xue Bin and Kanazawa, Angjoo and Malik, Jitendra and Abbeel, Pieter and Levine, Sergey},
	title = {SFV: Reinforcement Learning of Physical Skills from Videos},
	journal = {ACM Trans. Graph.},
	volume = {37},
	number = {6},
	month = nov,
	year = {2018},
	articleno = {178},
	numpages = {14},
	publisher = {ACM},
	address = {New York, NY, USA},
	keywords = {physics-based character animation, computer vision, video imitation, reinforcement learning, motion reconstruction}
} 
@inProceedings{kanazawaHMR18,
  title={End-to-end Recovery of Human Shape and Pose},
  author = {Angjoo Kanazawa
  and Michael J. Black
  and David W. Jacobs
  and Jitendra Malik},
  booktitle={Computer Vision and Pattern Regognition (CVPR)},
  year={2018}
}
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023