Motion Reconstruction Code and Data for Skills from Videos (SFV)

Overview

Motion Reconstruction Code and Data for Skills from Videos (SFV)

This repo contains the data and the code for motion reconstruction component of the SFV paper:

SFV: Reinforcement Learning of Physical Skills from Videos
Transactions on Graphics (Proc. ACM SIGGRAPH Asia 2018)
Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, Sergey Levine
University of California, Berkeley

Project Page

Teaser Image

Data

The data for the video can be found in this link.
It contains the:

  • Input videos
  • Intermediate 2D OpenPose, tracks, and HMR outputs
  • Result video of before and after motion reconstruction
  • Output of motion reconstruction in bvh used to train the character

See the README in the tar file for more details.

Requirements

  • TensorFlow
  • SMPL
  • Have the same models/ structure as in HMR (you need the trained models and neutral_smpl_with_cocoplus_reg.pkl)

Rotation augmented models

This repo uses fine-tuned models for OpenPose and HMR with rotation augmentation. The models used can be found here: ft-OpenPose, ft-HMR

Steps to run:

  1. python -m run_openpose

  2. python -m refine_video

I recommend starting with the preprocessed data that's packaged with the above link, and start from python -m refine_video. Then run step 1 for your own video.

Comments

Note this repo is more of a research code demo compared to my other project code releases. It's also slightly dated. I'm putting this out there in case this is useful for others. You may need to fix some quirks.

Pull requests/contributions welcome!

License

This particular repo is under BSD but please follow the license agreement for tools that I build on such as SMPL and OpenPose.

June 28 2019.

In this repo, motion reconstruction smoothes HMR output. We recently released the demo for Human Mesh and Motion Recovery (HMMR), which will give you smoother outputs. You can apply motion reconstrution on top of the HMMR outputs, which will be a better starting point. This would probably be the best combination of the tools out there today.

I'm also using 2D pose from OpenPose here and have my own hacky tracking code. However there are more recent tools such as AlphaPose and PoseFlow that will compute the tracklet for you. (We use this in the HMMR codebase).

Fitting the HMMR output to DensePose output will be another simple loss function to add to the motion reconstruction to get a good 3D body fit to a video.

All of these would be a good starter project ;)

Another practical improvements that should be made is that this uses OpenDR renderer to render the results, which is slow and takes up most of the run time. In HMMR we use (the pytorch NMR)[https://github.com/daniilidis-group/neural_renderer] to render the results. The same logic can be adapted here.

Citation

If you use this code for your research, please consider citing:

@article{
	2018-TOG-SFV,
	author = {Peng, Xue Bin and Kanazawa, Angjoo and Malik, Jitendra and Abbeel, Pieter and Levine, Sergey},
	title = {SFV: Reinforcement Learning of Physical Skills from Videos},
	journal = {ACM Trans. Graph.},
	volume = {37},
	number = {6},
	month = nov,
	year = {2018},
	articleno = {178},
	numpages = {14},
	publisher = {ACM},
	address = {New York, NY, USA},
	keywords = {physics-based character animation, computer vision, video imitation, reinforcement learning, motion reconstruction}
} 
@inProceedings{kanazawaHMR18,
  title={End-to-end Recovery of Human Shape and Pose},
  author = {Angjoo Kanazawa
  and Michael J. Black
  and David W. Jacobs
  and Jitendra Malik},
  booktitle={Computer Vision and Pattern Regognition (CVPR)},
  year={2018}
}
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022