Motion Reconstruction Code and Data for Skills from Videos (SFV)

Overview

Motion Reconstruction Code and Data for Skills from Videos (SFV)

This repo contains the data and the code for motion reconstruction component of the SFV paper:

SFV: Reinforcement Learning of Physical Skills from Videos
Transactions on Graphics (Proc. ACM SIGGRAPH Asia 2018)
Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, Sergey Levine
University of California, Berkeley

Project Page

Teaser Image

Data

The data for the video can be found in this link.
It contains the:

  • Input videos
  • Intermediate 2D OpenPose, tracks, and HMR outputs
  • Result video of before and after motion reconstruction
  • Output of motion reconstruction in bvh used to train the character

See the README in the tar file for more details.

Requirements

  • TensorFlow
  • SMPL
  • Have the same models/ structure as in HMR (you need the trained models and neutral_smpl_with_cocoplus_reg.pkl)

Rotation augmented models

This repo uses fine-tuned models for OpenPose and HMR with rotation augmentation. The models used can be found here: ft-OpenPose, ft-HMR

Steps to run:

  1. python -m run_openpose

  2. python -m refine_video

I recommend starting with the preprocessed data that's packaged with the above link, and start from python -m refine_video. Then run step 1 for your own video.

Comments

Note this repo is more of a research code demo compared to my other project code releases. It's also slightly dated. I'm putting this out there in case this is useful for others. You may need to fix some quirks.

Pull requests/contributions welcome!

License

This particular repo is under BSD but please follow the license agreement for tools that I build on such as SMPL and OpenPose.

June 28 2019.

In this repo, motion reconstruction smoothes HMR output. We recently released the demo for Human Mesh and Motion Recovery (HMMR), which will give you smoother outputs. You can apply motion reconstrution on top of the HMMR outputs, which will be a better starting point. This would probably be the best combination of the tools out there today.

I'm also using 2D pose from OpenPose here and have my own hacky tracking code. However there are more recent tools such as AlphaPose and PoseFlow that will compute the tracklet for you. (We use this in the HMMR codebase).

Fitting the HMMR output to DensePose output will be another simple loss function to add to the motion reconstruction to get a good 3D body fit to a video.

All of these would be a good starter project ;)

Another practical improvements that should be made is that this uses OpenDR renderer to render the results, which is slow and takes up most of the run time. In HMMR we use (the pytorch NMR)[https://github.com/daniilidis-group/neural_renderer] to render the results. The same logic can be adapted here.

Citation

If you use this code for your research, please consider citing:

@article{
	2018-TOG-SFV,
	author = {Peng, Xue Bin and Kanazawa, Angjoo and Malik, Jitendra and Abbeel, Pieter and Levine, Sergey},
	title = {SFV: Reinforcement Learning of Physical Skills from Videos},
	journal = {ACM Trans. Graph.},
	volume = {37},
	number = {6},
	month = nov,
	year = {2018},
	articleno = {178},
	numpages = {14},
	publisher = {ACM},
	address = {New York, NY, USA},
	keywords = {physics-based character animation, computer vision, video imitation, reinforcement learning, motion reconstruction}
} 
@inProceedings{kanazawaHMR18,
  title={End-to-end Recovery of Human Shape and Pose},
  author = {Angjoo Kanazawa
  and Michael J. Black
  and David W. Jacobs
  and Jitendra Malik},
  booktitle={Computer Vision and Pattern Regognition (CVPR)},
  year={2018}
}
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022