Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Overview

Torch Mutable Modules

Use in-place and assignment operations on PyTorch module parameters with support for autograd.

Publish to PyPI Run tests PyPI version Number of downloads from PyPI per month Python version support Code Style: Black

Why does this exist?

PyTorch does not allow in-place operations on module parameters (usually desirable):

linear_layer = torch.nn.Linear(1, 1)
linear_layer.weight.data += 69
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Valid, but will NOT store grad_fn=<AddBackward0>
linear_layer.weight += 420
# ^^^^^^^^^^^^^^^^^^^^^^^^
# RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

In some cases, however, it is useful to be able to modify module parameters in-place. For example, if we have a neural network (net_1) that predicts the parameter values to another neural network (net_2), we need to be able to modify the weights of net_2 in-place and backpropagate the gradients to net_1.

# create a parameter predictor network (net_1)
net_1 = torch.nn.Linear(1, 2)

# predict the weights and biases of net_2 using net_1
p_weight_and_bias = net_1(input_0).unsqueeze(2)
p_weight, p_bias = p_weight_and_bias[:, 0], p_weight_and_bias[:, 1]

# create a mutable network (net_2)
net_2 = to_mutable_module(torch.nn.Linear(1, 1))

# hot-swap the weights and biases of net_2 with the predicted values
net_2.weight = p_weight
net_2.bias = p_bias

# compute the output and backpropagate the gradients to net_1
output = net_2(input_1)
loss = criterion(output, label)
loss.backward()
optimizer.step()

This library provides a way to easily convert PyTorch modules into mutable modules with the to_mutable_module function.

Installation

You can install torch-mutable-modules from PyPI.

pip install torch-mutable-modules

To upgrade an existing installation of torch-mutable-modules, use the following command:

pip install --upgrade --no-cache-dir torch-mutable-modules

Importing

You can use wildcard imports or import specific functions directly:

# import all functions
from torch_mutable_modules import *

# ... or import the function manually
from torch_mutable_modules import to_mutable_module

Usage

To convert an existing PyTorch module into a mutable module, use the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1)
) # type of converted_module is still torch.nn.Linear

converted_module.weight *= 0
convreted_module.weight += 69
convreted_module.weight # tensor([[69.]], grad_fn=<AddBackward0>)

You can also declare your own PyTorch module classes as mutable, and all child modules will be recursively converted into mutable modules:

class MyModule(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(1, 1)
    
    def forward(self, x):
        return self.linear(x)

my_module = to_mutable_module(MyModule())
my_module.linear.weight *= 0
my_module.linear.weight += 69
my_module.linear.weight # tensor([[69.]], grad_fn=<AddBackward0>)

Usage with CUDA

To create a module on the GPU, simply pass a PyTorch module that is already on the GPU to the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1).cuda()
) # converted_module is now a mutable module on the GPU

Moving a module to the GPU with .to() and .cuda() after instanciation is NOT supported. Instead, hot-swap the module parameter tensors with their CUDA counterparts.

# both of these are valid
converted_module.weight = converted_module.weight.cuda()
converted_module.bias = converted_module.bias.to("cuda")

Detailed examples

Please check out example.py to see more detailed example usages of the to_mutable_module function.

Contributing

Please feel free to submit issues or pull requests!

You might also like...
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

 MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare results and run monte carlo algorithm with them

Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Torch implementation of
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Releases(v1.1.2)
Owner
Kento Nishi
17-year-old programmer at Lynbrook High School, with strong interests in AI/Machine Learning. Open source developer and researcher at the Four Eyes Lab.
Kento Nishi
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022