Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Overview

Torch Mutable Modules

Use in-place and assignment operations on PyTorch module parameters with support for autograd.

Publish to PyPI Run tests PyPI version Number of downloads from PyPI per month Python version support Code Style: Black

Why does this exist?

PyTorch does not allow in-place operations on module parameters (usually desirable):

linear_layer = torch.nn.Linear(1, 1)
linear_layer.weight.data += 69
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Valid, but will NOT store grad_fn=<AddBackward0>
linear_layer.weight += 420
# ^^^^^^^^^^^^^^^^^^^^^^^^
# RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

In some cases, however, it is useful to be able to modify module parameters in-place. For example, if we have a neural network (net_1) that predicts the parameter values to another neural network (net_2), we need to be able to modify the weights of net_2 in-place and backpropagate the gradients to net_1.

# create a parameter predictor network (net_1)
net_1 = torch.nn.Linear(1, 2)

# predict the weights and biases of net_2 using net_1
p_weight_and_bias = net_1(input_0).unsqueeze(2)
p_weight, p_bias = p_weight_and_bias[:, 0], p_weight_and_bias[:, 1]

# create a mutable network (net_2)
net_2 = to_mutable_module(torch.nn.Linear(1, 1))

# hot-swap the weights and biases of net_2 with the predicted values
net_2.weight = p_weight
net_2.bias = p_bias

# compute the output and backpropagate the gradients to net_1
output = net_2(input_1)
loss = criterion(output, label)
loss.backward()
optimizer.step()

This library provides a way to easily convert PyTorch modules into mutable modules with the to_mutable_module function.

Installation

You can install torch-mutable-modules from PyPI.

pip install torch-mutable-modules

To upgrade an existing installation of torch-mutable-modules, use the following command:

pip install --upgrade --no-cache-dir torch-mutable-modules

Importing

You can use wildcard imports or import specific functions directly:

# import all functions
from torch_mutable_modules import *

# ... or import the function manually
from torch_mutable_modules import to_mutable_module

Usage

To convert an existing PyTorch module into a mutable module, use the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1)
) # type of converted_module is still torch.nn.Linear

converted_module.weight *= 0
convreted_module.weight += 69
convreted_module.weight # tensor([[69.]], grad_fn=<AddBackward0>)

You can also declare your own PyTorch module classes as mutable, and all child modules will be recursively converted into mutable modules:

class MyModule(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(1, 1)
    
    def forward(self, x):
        return self.linear(x)

my_module = to_mutable_module(MyModule())
my_module.linear.weight *= 0
my_module.linear.weight += 69
my_module.linear.weight # tensor([[69.]], grad_fn=<AddBackward0>)

Usage with CUDA

To create a module on the GPU, simply pass a PyTorch module that is already on the GPU to the to_mutable_module function:

converted_module = to_mutable_module(
    torch.nn.Linear(1, 1).cuda()
) # converted_module is now a mutable module on the GPU

Moving a module to the GPU with .to() and .cuda() after instanciation is NOT supported. Instead, hot-swap the module parameter tensors with their CUDA counterparts.

# both of these are valid
converted_module.weight = converted_module.weight.cuda()
converted_module.bias = converted_module.bias.to("cuda")

Detailed examples

Please check out example.py to see more detailed example usages of the to_mutable_module function.

Contributing

Please feel free to submit issues or pull requests!

You might also like...
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

 MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare results and run monte carlo algorithm with them

Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Torch implementation of
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Releases(v1.1.2)
Owner
Kento Nishi
17-year-old programmer at Lynbrook High School, with strong interests in AI/Machine Learning. Open source developer and researcher at the Four Eyes Lab.
Kento Nishi
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022