A machine learning malware analysis framework for Android apps.

Overview

🕵️ A machine learning malware analysis framework for Android apps. ☢️


DroidDetective is a Python tool for analysing Android applications (APKs) for potential malware related behaviour and configurations. When provided with a path to an application (APK file) Droid Detective will make a prediction (using it's ML model) of if the application is malicious. Features and qualities of Droid Detective include:

  • Analysing which of ~330 permissions are specified in the application's AndroidManifest.xml file. 🙅
  • Analysing the number of standard and proprietary permissions in use in the application's AndroidManifest.xml file. 🧮
  • Using a RandomForest machine learning classifier, trained off the above data, from ~14 malware families and ~100 Google Play Store applications. 💻

🤖 Getting Started

Installation

All DroidDetective dependencies can be installed manually or via the requirements file, with

pip install -r REQUIREMENTS.txt

DroidDetective has been tested on both Windows 10 and Ubuntu 18.0 LTS.

Usage

DroidDetective can be run by providing the Python file with an APK as a command line parameter, such as:

python DroidDetective.py myAndroidApp.apk

If an apk_malware.model file is not present, then the tooling will first train the model and will require a training set of APKs in both a folder at the root of the project called malware and another called normal. Once run successfully a result will be printed onto the CLI on if the model has identified the APK to be malicious or benign. An example of this output can be seen below:

>> Analysed file 'com.android.camera2.apk', identified as not malware.

An additional parameter can be provided to DroidDetective.py as a Json file to save the results to. If this Json file already exists the results of this run will be appended to the Json file.

python DroidDetective.py myAndroidApp.apk output.json

An example of this output Json is as follows:

{
    "com.android.camera2": false,
}

⚗️ Data Science | The ML Model

DroidDetective is a Python tool for analyzing Android applications (APKs) for potential malware related behaviour. This works by training a Random Forest classifier on information derived from both known malware APKs and standard APKs available on the Android app store. This tooling comes pre-trained, however, the model can be re-trained on a new dataset at any time. ⚙️

This model currently uses permissions from an APKs AndroidManifest.xml file as a feature set. This works by creating a dictionary of each standard Android permission and setting the feature to 1 if the permission is present in the APK. Similarly, a feature is added for the amount of permissions in use in the manifest and for the amount of unidentified permissions found in the manifest.

The pre-trained model was trained off approximately 14 malware families (each with one or more APK files), located from ashisdb's repository, and approximately 100 normal applications located from the Google Play Store.

The below denotes the statistics for this ML model:

Accuracy: 0.9310344827586207
Recall: 0.9166666666666666
Precision: 0.9166666666666666
F-Measure: 0.9166666666666666

The top 10 highest weighted features (i.e. Android permissions) used by this model, for identifying malware, can be seen below:

"android.permission.SYSTEM_ALERT_WINDOW": 0.019091367939223395,
"android.permission.ACCESS_NETWORK_STATE": 0.021001765263234648,
"android.permission.ACCESS_WIFI_STATE": 0.02198962579120518,
"android.permission.RECEIVE_BOOT_COMPLETED": 0.026398914436102188,
"android.permission.GET_TASKS": 0.03595458598076517,
"android.permission.WAKE_LOCK": 0.03908212881520419,
"android.permission.WRITE_SMS": 0.057041576632290585,
"android.permission.INTERNET": 0.08816028225034145,
"android.permission.WRITE_EXTERNAL_STORAGE": 0.09835914154294739,
"other_permission": 0.10189463965313218,
"num_of_permissions": 0.12392224814084198

📜 License

GNU General Public License v3.0

Owner
James Stevenson
I’m a Software Engineer and Security Researcher, with a background of over five years in the computer security industry.
James Stevenson
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022