Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

Overview

AdderNet: Do We Really Need Multiplications in Deep Learning?

This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in Deep Learning?

We present adder networks (AdderNets) to trade massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the L1-norm distance between filters and input feature as the output response. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

UPDATE: The training code is released in 6/28.

Run python main.py to train on CIFAR-10.

UPDATE: Model Zoo about AdderNets are released in 11/27.

Classification results on CIFAR-10 and CIFAR-100 datasets.

Model Method CIFAR-10 CIFAR-100
VGG-small ANN [1] 93.72% 74.58%
PKKD ANN [2] 95.03% 76.94%
ResNet-20 ANN 92.02% 67.60%
PKKD ANN 92.96% 69.93%
ShiftAddNet* [3] 89.32%(160epoch) -
ResNet-32 ANN 93.01% 69.17%
PKKD ANN 93.62% 72.41%

Classification results on ImageNet dataset.

Model Method Top-1 Acc Top-5 Acc
ResNet-18 CNN 69.8% 89.1%
ANN [1] 67.0% 87.6%
PKKD ANN [2] 68.8% 88.6%
ResNet-50 CNN 76.2% 92.9%
ANN 74.9% 91.7%
PKKD ANN 76.8% 93.3%

Super-Resolution results on several SR datasets.

Scale Model Method Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) B100 (PSNR/SSIM) Urban100 (PSNR/SSIM)
×2 VDSR CNN 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
ANN [4] 37.37/0.9575 32.91/0.9112 31.82/0.8947 30.48/0.9099
EDSR CNN 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351
ANN 37.92/0.9589 33.82/0.9183 32.23/0.9000 32.63/0.9309
×3 VDSR CNN 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
ANN 33.47/0.9151 29.62/0.8276 28.72/0.7953 26.95/0.8189
EDSR CNN 34.65/0.9282 30.52/0.8462 29.25/0.8093 28.80/0.8653
ANN 34.35/0.9212 30.33/0.8420 29.13/0.8068 28.54/0.8555
×4 VDSR CNN 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
ANN 31.27/0.8762 27.93/0.7630 27.25/0.7229 25.09/0.7445
EDSR CNN 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033
ANN 32.13/0.8864 28.57/0.7800 27.58/0.7368 26.33/0.7874

*ShiftAddNet [3] used different training setting.

[1] AdderNet: Do We Really Need Multiplications in Deep Learning? Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, Chang Xu. CVPR, 2020. (Oral)

[2] Kernel Based Progressive Distillation for Adder Neural Networks. Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing XU, Yunhe Wang. NeurIPS, 2020. (Spotlight)

[3] ShiftAddNet: A Hardware-Inspired Deep Network. Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, Yingyan Lin. NeurIPS, 2020.

[4] AdderSR: Towards Energy Efficient Image Super-Resolution. Dehua Song, Yunhe Wang, Hanting Chen, Chang Xu, Chunjing Xu, Dacheng Tao. Arxiv, 2020.

Requirements

  • python 3
  • pytorch >= 1.1.0
  • torchvision

Preparation

You can follow pytorch/examples to prepare the ImageNet data.

The pretrained models are available in google drive or baidu cloud (access code:126b)

Usage

Run python main.py to train on CIFAR-10.

Run python test.py --data_dir 'path/to/imagenet_root/' to evaluate on ImageNet val set. You will achieve 74.9% Top accuracy and 91.7% Top-5 accuracy on the ImageNet dataset using ResNet-50.

Run python test.py --dataset cifar10 --model_dir models/ResNet20-AdderNet.pth --data_dir 'path/to/cifar10_root/' to evaluate on CIFAR-10. You will achieve 91.8% accuracy on the CIFAR-10 dataset using ResNet-20.

The inference and training of AdderNets is slow since the adder filters is implemented without cuda acceleration. You can write cuda to achieve higher inference speed.

Citation

@article{AdderNet,
	title={AdderNet: Do We Really Need Multiplications in Deep Learning?},
	author={Chen, Hanting and Wang, Yunhe and Xu, Chunjing and Shi, Boxin and Xu, Chao and Tian, Qi and Xu, Chang},
	journal={CVPR},
	year={2020}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR, because we might be taking the core in a different direction than you might be aware of.

Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022