QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Overview

QuickAI logo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Announcement video https://www.youtube.com/watch?v=kK46sJphjIs

Motivation

When I started to get into more advanced Machine Learning, I started to see how these famous neural network architectures(such as EfficientNet), were doing amazing things. However, when I tried to implement these architectures to problems that I wanted to solve, I realized that it was not super easy to implement and quickly experiment with these architectures. That is where QuickAI came in. It allows for easy experimentation of many model architectures quickly.

Dependencies:

Tensorflow, PyTorch, Sklearn, Matplotlib, Numpy, and Hugging Face Transformers. You should install TensorFlow and PyTorch following the instructions from their respective websites.

Why you should use QuickAI

QuickAI can reduce what would take tens of lines of code into 1-2 lines. This makes fast experimentation very easy and clean. For example, if you wanted to train EfficientNet on your own dataset, you would have to manually write the data loading, preprocessing, model definition and training code, which would be many lines of code. Whereas, with QuickAI, all of these steps happens automatically with just 1-2 lines of code.

The following models are currently supported:

  1. Image Classification

    • EfficientNet B0-B7
    • VGG16
    • VGG19
    • DenseNet121
    • DenseNet169
    • DenseNet201
    • Inception ResNet V2
    • Inception V3
    • MobileNet
    • MobileNet V2
    • MobileNet V3 Small & Large
    • ResNet 101
    • ResNet 101 V2
    • ResNet 152
    • ResNet 152 V2
    • ResNet 50
    • ResNet 50 V2
    • Xception
  2. Natural Language Processing

    • GPT-NEO 125M(Generation, Inference)
    • GPT-NEO 350M(Generation, Inference)
    • GPT-NEO 1.3B(Generation, Inference)
    • GPT-NEO 2.7B(Generation, Inference)
    • Distill BERT Cased(Q&A, Inference and Fine Tuning)
    • Distill BERT Uncased(Named Entity Recognition, Inference)
    • Distil BART (Summarization, Inference)
    • Distill BERT Uncased(Sentiment Analysis & Text/Token Classification, Inference and Fine Tuning)

Installation

pip install quickAI

How to use

Please see the examples folder for details.

Issues/Questions

If you encounter any bugs, please open a new issue so they can be corrected. If you have general questions, please use the discussion section.

Comments
  • Memory error

    Memory error

    Is it possible to host the gpt neo models on a website and make some kind of API, the models are to large to run on my computer. Also It would be nice if to have a stop function so the model knows at what token to stop and be able to add examples of the query needed.

    enhancement 
    opened by TheProtaganist 5
  • Add link to a demo

    Add link to a demo

    Hi, I tried using the notebook in the example folder but it wasn't working (I think the files were not imported into Colab), so I created a demo which should work.

    opened by equiet 1
  • Better code for image_classification.py

    Better code for image_classification.py

    Main change: Used a dict instead of excessive elifs. Other smaller changes.

    Important: I do not have the resources to test the code, but technically, it's just a rewrite of the original, so it should work.

    opened by pinjuf 1
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires numpy, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade ubuntu from 21.10 to jammy

    [Snyk] Security upgrade ubuntu from 21.10 to jammy

    This PR was automatically created by Snyk using the credentials of a real user.


    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:jammy, as this image has only 10 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 514 | Out-of-bounds Read
    SNYK-UBUNTU2110-E2FSPROGS-2770726 | No Known Exploit | | medium severity | 300 | NULL Pointer Dereference
    SNYK-UBUNTU2110-KRB5-1735754 | No Known Exploit | | medium severity | 300 | OS Command Injection
    SNYK-UBUNTU2110-OPENSSL-2933132 | No Known Exploit | | medium severity | 300 | Inadequate Encryption Strength
    SNYK-UBUNTU2110-OPENSSL-2941384 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by geekjr 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from rolling to 21.10

    [Snyk] Security upgrade ubuntu from rolling to 21.10

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:21.10, as this image has only 12 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Issue | Exploit Maturity | | :------: | :---- | :--------------- | | medium severity | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | NULL Pointer Dereference
    SNYK-UBUNTU2110-TAR-1744334 | No Known Exploit | | medium severity | CVE-2018-25032
    SNYK-UBUNTU2110-ZLIB-2433596 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from 18.04 to rolling

    [Snyk] Security upgrade ubuntu from 18.04 to rolling

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:rolling, as this image has only 13 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU1804-PERL-1930908 | No Known Exploit | | low severity | 150 | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU1804-SHADOW-306209 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 471/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.19.5 -> 1.22.0
    | No | No Known Exploit low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.1 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3180412 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 441/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.1 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3113904 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
Releases(2.0.0)
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022