Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

Overview

C2-Matching (CVPR2021)

Python 3.7 pytorch 1.4.0

This repository contains the implementation of the following paper:

Robust Reference-based Super-Resolution via C2-Matching
Yuming Jiang, Kelvin C.K. Chan, Xintao Wang, Chen Change Loy, Ziwei Liu
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

[Paper] [Project Page] [WR-SR Dataset]

Overview

overall_structure

Dependencies and Installation

  • Python >= 3.7
  • PyTorch >= 1.4
  • CUDA 10.0 or CUDA 10.1
  • GCC 5.4.0
  1. Clone Repo

    git clone [email protected]:yumingj/C2-Matching.git
  2. Create Conda Environment

    conda create --name c2_matching python=3.7
    conda activate c2_matching
  3. Install Dependencies

    cd C2-Matching
    conda install pytorch=1.4.0 torchvision cudatoolkit=10.0 -c pytorch
    pip install mmcv==0.4.4
    pip install -r requirements.txt
  4. Install MMSR and DCNv2

    python setup.py develop
    cd mmsr/models/archs/DCNv2
    python setup.py build develop

Dataset Preparation

Please refer to Datasets.md for pre-processing and more details.

Get Started

Pretrained Models

Downloading the pretrained models from this link and put them under experiments/pretrained_models folder.

Test

We provide quick test code with the pretrained model.

  1. Modify the paths to dataset and pretrained model in the following yaml files for configuration.

    ./options/test/test_C2_matching.yml
    ./options/test/test_C2_matching_mse.yml
  2. Run test code for models trained using GAN loss.

    python mmsr/test.py -opt "options/test/test_C2_matching.yml"

    Check out the results in ./results.

  3. Run test code for models trained using only reconstruction loss.

    python mmsr/test.py -opt "options/test/test_C2_matching_mse.yml"

    Check out the results in in ./results

Train

All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments and ./tb_logger directory.

  1. Modify the paths to dataset in the following yaml files for configuration.

    ./options/train/stage1_teacher_contras_network.yml
    ./options/train/stage2_student_contras_network.yml
    ./options/train/stage3_restoration_gan.yml
  2. Stage 1: Train teacher contrastive network.

    python mmsr/train.py -opt "options/train/stage1_teacher_contras_network.yml"
  3. Stage 2: Train student contrastive network.

    # add the path to *pretrain_model_teacher* in the following yaml
    # the path to *pretrain_model_teacher* is the model obtained in stage1
    ./options/train/stage2_student_contras_network.yml
    python mmsr/train.py -opt "options/train/stage2_student_contras_network.yml"
  4. Stage 3: Train restoration network.

    # add the path to *pretrain_model_feature_extractor* in the following yaml
    # the path to *pretrain_model_feature_extractor* is the model obtained in stage2
    ./options/train/stage3_restoration_gan.yml
    python mmsr/train.py -opt "options/train/stage3_restoration_gan.yml"
    
    # if you wish to train the restoration network with only mse loss
    # prepare the dataset path and pretrained model path in the following yaml
    ./options/train/stage3_restoration_mse.yml
    python mmsr/train.py -opt "options/train/stage3_restoration_mse.yml"

Visual Results

For more results on the benchmarks, you can directly download our C2-Matching results from here.

result

Webly-Reference SR Dataset

Check out our Webly-Reference (WR-SR) SR Dataset through this link! We also provide the baseline results for a quick comparison in this link.

Webly-Reference SR dataset is a test dataset for evaluating Ref-SR methods. It has the following advantages:

  • Collected in a more realistic way: Reference images are searched using Google Image.
  • More diverse than previous datasets.

result

Citaion

If you find our repo useful for your research, please consider citing our paper:

@InProceedings{jiang2021c2matching,
   author = {Yuming Jiang and Kelvin C.K. Chan and Xintao Wang and Chen Change Loy and Ziwei Liu},
   title = {Robust Reference-based Super-Resolution via C2-Matching},
   booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   year = {2021}
}

License and Acknowledgement

This project is open sourced under MIT license. The code framework is mainly modified from BasicSR and MMSR (Now reorganized as MMEditing). Please refer to the original repo for more usage and documents.

Contact

If you have any question, please feel free to contact us via [email protected].

Owner
Yuming Jiang
[email protected], Ph.D. Student
Yuming Jiang
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022