A Unified Framework and Analysis for Structured Knowledge Grounding

Overview

UnifiedSKG πŸ“š : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models

Open In Colab

Code for paper UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models. Please refer to our project page for up-to-date related resources (e.g., papers, code, tools, tutorials) in Structured Knowledge Grounding.

Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they were historically studied in separate by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into the text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We show that large language models like T5, with simple modification when necessary, achieve state-of-the-art performance on all 21 tasks. UnifiedSKG facilitates the investigation of multi-task, zero-shot, and few-shot learning. We demonstrate that multi-task prefix-tuning with UNIFIEDSKG improves the performance on most tasks and show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. UnifiedSKG also enables a series of controlled experiments on structured knowledge encoding variants across SKG tasks. We find that T5’s sensitivity to structured knowledge encoding variations varies across tasks.

UnifiedSKG is easily extensible to more tasks. We encourage researchers to make a pull request to add their datasets, metrics, models to the UnifiedSKG framework!

Updates

Content

Cloning this repo

In order to include third-party dependencies in this repository, make sure to clone recursively, e.g.:

git clone --recurse-submodules [email protected]:HKUNLP/UnifiedSKG.git

Dependencies

To establish the environment run this code in the shell (the third line is for CUDA11.1):

conda env create -f py3.7pytorch1.8.yaml
conda activate py3.7pytorch1.8new
pip install datasets==1.14.0
# The following line to be replaced depending on your cuda version.
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

That will create the environment py3.7pytorch1.8new we used.

Usage

Environment setup

Activate the environment by running

conda activate py3.7pytorch1.8new

WandB setup

Setup WandB for logging (registration needed):

export WANDB_ENTITY=YOUR_WANDB_USERNAME
export WANDB_API_KEY=YOUR_WANDB_API_KEY
export WANDB_PROJECT=YOUR_PROJECT_NAME

Training

T5-base finetuning on WikiTQ (4 GPUs, 128 effective batch size)

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_finetune_wikitq.cfg --run_name T5_base_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_finetune_wikitq --overwrite_output_dir --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

If you want to resume training, remove the --overwrite_output_dir flag from the above command:

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_finetune_wikitq.cfg --run_name T5_base_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_finetune_wikitq --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

T5-base prefix-tuning on WikiTQ (4 GPUs, 128 effective batch size)

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_prefix_wikitq.cfg --run_name T5_base_prefix_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_prefix_wikitq --overwrite_output_dir --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

T5-3b finetuning on WikiTQ (8 GPUs, 128 effective batch size)

deepspeed train.py --deepspeed deepspeed/ds_config_zero2.json --seed 2 --cfg Salesforce/T5_3b_finetune_wikitq.cfg --run_name T5_3b_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 16 --num_train_epochs 50 --adafactor false --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_3b_finetune_wikitq --overwrite_output_dir --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

Load weights

See Open In Colab

Code structure overview of UnifiedSKG

.
β”œβ”€β”€ configure                              # Config files for experiments, tasks, and settings
β”‚   β”œβ”€β”€ META_TUNING                        # Config files for tasks and settings
β”‚   └── Salesforce                         # Config files for experiments. We name this diretory as Salesforce to thank Salesforce Research for providing a large number of GPUs. We would like also to thank Amazon Research Awards, ServiceNow Research, and Yale NLP for providing computing resources generously.
β”‚
β”œβ”€β”€ metrics                                # Code for evaluation
β”‚   └── ...                                # Please check the README of the ./seq2seq_construction.
β”œβ”€β”€ models                                 # Code for models
β”‚   β”œβ”€β”€ adapter                            # Code for T5 and BART with adapters (based on HuggingFace Transformers)
β”‚   β”œβ”€β”€ prompt                             # Code for T5 and BART with prefix-tuning (based on HuggingFace Transformers)
β”‚   └── unified
β”‚           β”œβ”€β”€ base.py                    # Code for the base model that enables an arbitrary model to be pushed to HuggingFace Model Hub (namely, PushToHubFriendlyModel)
β”‚           β”œβ”€β”€ finetune.py                # Code for finetuning
β”‚           β”œβ”€β”€ adaptertuning.py           # Code for adapter-tuning
β”‚           └── prefixtuning.py            # Code for prefix-tuning
β”‚
β”œβ”€β”€ seq2seq_construction                   # Code for converting raw data into sequences
β”‚    └──  ...                              # Please check the README in this directory.
β”‚
β”œβ”€β”€ tasks                                  # Code for loading raw data
β”‚    └──  ...                              # Please check the README in this directory.
β”‚
β”œβ”€β”€ third_party                            # Packages from third parties
β”‚    └──  ...                              # Please check the README in this directory.
β”‚
β”œβ”€β”€ utils                                  # Code for some (probably) useful stuff
β”‚       β”œβ”€β”€ processor                      # Adopted from Tapex: the processor that handles table truncation and linearization
        β”‚        └──  ...            
β”‚       β”œβ”€β”€ configure.py                   # Code for parsing config files in ./configure
β”‚       β”œβ”€β”€ dataset.py                     # Code for converting input and output sequences into Datasets for training
β”‚       β”œβ”€β”€ tool.py                        # Code for loading models, seq2seq constructors, and evaluators
β”‚       β”œβ”€β”€ trainer.py                     # Code for EvaluationFriendlyTrainer. If you want make training-specific modifications, you may want to change something here.
β”‚       └── training_arguments.py          # Code for seq2seq training arguments
β”‚
β”œβ”€β”€ .gitignore                 
β”œβ”€β”€ .gitmodules                    
β”œβ”€β”€ py3.7pytorch1.8.yaml                   # Anaconda environment config file
β”œβ”€β”€ README.md                              # The README file you are looking at :)
└── train.py                               # Entry code, which controls train, eval, test, storage, and logging

How to unify a new task into the framework?

(README in ./tasks, ./seq2seq_construction, ./metrics, ./configure can also be useful)

  • step 1, Add the "Loader" of raw data in ./tasks, (you can search in huggingface dataset website firstly to find whether there is already a usable script, if not, that's great because you can be the contributor of both this project and huggingface community.

  • step 2, Add the "Wrapper" which construct "seq_in"("user request input" & "structured knowledge input") and "seq_out" from and add to the raw_data for seq2seq unification.

  • step 3, Add the "Evaluator"(for task) in ./metrics. if any third_party repo are used, please add them into .gitmodules.

  • step 3.5(optional), You can always add new "Model" into the ./models/ if you like, change the path in config files to drive new model.

  • step 4, Add the "Config" file to drive your task or all the tasks we have by finetune/multi-task-finetune/pretrain/prefix-tuning/multi-task-prefix-tuning... or other ways.

And this is all for it ! =)

Contributors

Owner
HKU NLP Group
HKU NLP Group
Code for β€œACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computingβ€”Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rushβ€”thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

RΓΆst Lab 13 Oct 27, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
πŸ₯‡ LG-AI-Challenge 2022 1μœ„ μ†”λ£¨μ…˜ μž…λ‹ˆλ‹€.

LG-AI-Challenge-for-Plant-Classification Daconμ—μ„œ μ§„ν–‰λœ 농업 ν™˜κ²½ 변화에 λ”°λ₯Έ μž‘λ¬Ό 병해 진단 AI κ²½μ§„λŒ€νšŒ 에 λŒ€ν•œ μ½”λ“œμž…λ‹ˆλ‹€. (colab directory에 μ½”λ“œκ°€ 잘 정리 λ˜μ–΄μžˆμŠ΅λ‹ˆλ‹€.) Requirements python

siwooyong 10 Jun 30, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022